Reactive Dataflow for Inflight Error Handling in ML Workflows

Abhilash Jindal Kaustubh Beedkar Vishal Singh
IIT Delhi, India IIT Delhi, India IIT Delhi, India
ajindal@iitd.ac.in kbeedkar@iitd.ac.in tmibvishal@gmail.com
J. Nausheen Mohammed Tushar Singla Aman Gupta Keerti Choudhary

IIT Delhi, India IIT Delhi, India
mdjnausheen786@gmail.com tusharsingla078@gmail.com

ABSTRACT

Modern data analytics pipelines comprise traditional data transfor-
mation operations and pre-trained ML models deployed as user-
defined functions (UDFs). Such pipelines, which we call ML work-
flows, generally produce erroneous results due to data errors in-
advertently introduced by ML models. Model errors are one of
the main obstacles to improved accuracy of ML workflows. In this
paper, we present POPPER, a dataflow system—for expressing ML
workflows—that natively supports inflight error handling. Users
can extend ML workflows expressed in POPPER by plugging in er-
ror handlers to improve accuracy. We propose reactive dataflow, a
novel cyclic graph-based dataflow model that provides convenient
abstractions for interleaving dataflow operators with user-defined
error handlers for detecting and correcting errors on the fly. We
also propose an efficient execution strategy amenable to pipeline
parallel execution of reactive dataflow. We discuss open research
challenges for making error handling a first-class citizen in dataflow
systems and present preliminary evaluation of our prototypical sys-
tem, which shows the effectiveness and benefits of inflight error
handling in ML workflows.
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1 INTRODUCTION

Recent integration of pre-trained ML models into traditional data
processing pipelines has brought transformative changes, enabling
diverse applications such as traffic planning, autonomous driving,
text question answering, and automating tedious manual tasks.
At the core of modern data analytics applications lies data pro-
cessing pipelines, which are composed of complex data transforma-
tions and ML models. We refer to these pipelines as ML workflows.
ML models are often deployed in workflows as user-defined func-
tions (UDFs) interleaving with other data transformation UDFs and
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relational operations such as projection, join, or aggregation. For
example, Figure 1 shows an ML workflow for traffic data analysis.
The workflow processes stored traffic videos to first extract vehi-
cles’ number plates and combine them with data from the vehicle
registration database to count the number of vehicles for each fuel
type (petrol, diesel, CNG, or electric) within a time window. Similar
ML workflows are useful for improving traffic planning, debugging
autonomous vehicle models, and automating tedious manual tasks.

Data processing frameworks such as Spark [54], Flink [12], Na-
iad [39] among others [1, 13, 29] have expanded their scope from
handling traditional relational workloads to more complex and di-
verse workloads involving UDFs. These frameworks have allowed
for streamlined development and efficient execution of ML work-
flows over large datasets.

Yet, developing effective ML workflows remains a challenge. The
building blocks of these workflows, which are the ML models, can
silently introduce errors. For example, the ML model for optical
character recognition in Figure 1, to convert the number plate image
to a machine-readable text may produce erroneous data [30]. ML
models deployed in workflows are bound to make errors, which
arise for diverse reasons, including changes in data distribution
between training and deployment data, incomplete training data,
or noisy inputs [47]. Model errors can significantly impact the end-
to-end accuracy of ML workflows [33]. Inflight error handling is
therefore crucial for effective ML workflow development.

In this paper, we discuss three open research challenges from
a dataflow system perspective to make inflight error handling a
first-class citizen: abstractions for interleaving user-defined error
handlers with dataflow operators; cyclic-graph based execution
model for inflight modifications; and intuitive APIs for workflow
developers for specifying ML workflows with error handlers.

To address the above challenges, we present POPPER, a prototyp-
ical dataflow system for developing ML workflows. We introduce
reactive dataflow, a new programming model, which extends the
existing dataflow model with user-defined error handlers as first-
class citizens and allows expressing incremental changes to inflight
data by downstream error handlers, i.e., error handlers can detect
errors in the dataflow and correct the output of upstream opera-
tors. We also propose an execution model based on directed cyclic
graphs that allows for efficient execution of reactive dataflow. The
key aspect of our execution model is categorization of graph edges
based on certain transformation properties of dataflow operations.
This categorization enables efficient propagation of corrections ap-
plied to upstream operators. We also propose novel techniques that
enable pipeline parallel execution of reactive dataflow and present
PoPPER’s staged execution and architecture.
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Figure 1: An example traffic analysis ML workflow that counts the number of trucks for each fuel type within a time window.
ML models like object detection, finding number plate, and optical character recognition can introduce mistakes. Error handlers
2, 10, and 11 catch mistakes and apply corrections in upstream operators’ outputs.

Our preliminary experimental study using real-world ML work-
flows shows that inflight error handling improves F1 scores by up
to 0.44 which translates into up to 39.4% reduction in human-in-the-
loop cost, measured by the number of post-facto manual corrections
needed by the workflows. The results also show that POPPER can
execute dataflow programs efficiently.

2 INFLIGHT ERROR HANDLING

We start with a motivating scenario to illustrate the need for inflight
error handling in ML workflows. We then discuss the status quo for
error handling in dataflow systems before outlining the research
challenges.

2.1 Motivation

Consider a traffic analysis application that runs a Machine Learning
(ML) workflow!, which processes traffic videos to extract vehicles’
number plates and combines it with data from the vehicle regis-
tration database to count the number of trucks for each fuel type
(petrol, diesel, CNG, and electric) within a time window. More con-
cretely, Figure 1 illustrates the ML workflow for the above use case.
Ignore the red circles, shaded boxes, and dashed arrows for now.
In our example workflow, first, each video frame f_id is pro-
cessed using an object detection and tracking model odt () to deter-
mine the type obj_type of object (e.g., car, truck, bike, etc.), an iden-
tifier obj_id for objects, and their bounding boxes b_box2. Then, the
frames containing trucks are processed using ML models: findNP()
to determine the bounding box of the number plate n_box and an
optical character recognition model ocr () to determine the vehicle’s
number plate v_num. Lastly, this data is joined with data from the
vehicle registration database that stores the fuel type f_type infor-
mation of each vehicle before aggregating the data for each vehicle
type and time window. Figure 1 shows the data processing opera-
tions for the above workflow, where we also show excerpts of some
intermediate data (tuples) between different workflow operations.

!In this paper, we consider ML workflows that comprise ML inference tasks.
2We note that bounding boxes are typically represented by four values (coordinates);
for brevity we represent them by one value in Figure 1.

ML workflows are typically expressed as dataflows (as shown in
Figure 1), where the workflow is modeled as a directed graph of data
flowing between operations. Dataflow systems such as Spark [54],
Flink [12], or Naiad [39] among others [29] are a natural choice to
express ML workflows as they offer convenient abstractions with
well-defined operator semantics and support for user-defined func-
tions (UDFs). For instance, one could easily express the workflow
in Figure 1 using user-defined Map, Filter, Join, and ReduceByKey
operations that dataflow systems’ API provides.

Developing effective ML workflows is challenging as the building
blocks of these workflows, the ML models, often produce erroneous
outputs. Errors may arise for diverse reasons, including changes
in data distribution between training and deployment data, incom-
plete training data, or noisy inputs. For example, in the workflow
shown in Figure 1, operations such as odt (), findNP(), or ocr() may
produce erroneous outputs. For instance, odt () may fail to detect a
truck, i.e., when the model detected the same truck (obj_id=3) in
frames 3 and 5, but not in frame 4. We show this missing detection
(row labeled €)) by a shaded box in the output of odt (). Likewise,
the ML model used in findNP() operation may incorrectly identify
the bounding box of the vehicle’s number plate (label @), or the op-
tical character recognition model in ocr() may output an incorrect
vehicle number (label @), for example, “L23” instead of “123”.

Model errors can significantly impact the end-to-end accuracy of
ML workflows. In Figure 1, for example, a missing object detection
or incorrectly identifying a vehicle’s number plate may lead to
inaccurate aggregates i.e., the workflow will incorrectly compute
the number of diesel trucks for the window comprising frames 1-5.
Therefore, handling data errors in ML workflows is crucial.

2.2 Status quo

Existing dataflow systems lack native support for inflight error
handling. We note that effective error handling requires both error
detection and error correction. Recent work [33] has shown that
ML model errors can be detected using so-called model assertions,
i.e., by having “special” operations that check for the correctness
of a model’s output. For example in the workflow of Figure 1, one
could implement a stateful Map operator to detect objects missed
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by odt() in consecutive frames, before outputting the detection.
However, such an approach has limitations in that it cannot be
used for handling errors that may only be evident later, i.e., in the
output of some downstream operation. In our ongoing example, for
instance, an error in the output of findNP() or ocr() is only evident
after an error is detected in the output of the Join operation. For
example, the workflow developer can check for a null value in left
v_num to detect an error in the output of either or both previous
operations 4 and 5—as every vehicle must be registered.

Detecting and debugging data errors (e.g., null values) in a
dataflow can also be achieved using data debugging techniques
proposed in [16, 23, 24, 28, 35]. For example, using the backward
tracing technique employed in data debugging, one can debug that
the null values in a certain output row of operator 9 results from
the output rows @ and/or O However, correcting the erroneous
upstream rows remains a challenge. The workflow developer, for in-
stance, may want to use a different OCR engine only for erroneous
tuples (e.g., row @) without impacting the other inflight data.

Overall, current approach in dataflow systems to handle errors
is to “drop” the erroneous tuples. While this may improve the
precision of the workflow, it worsens the recall. Instead, a desirable
approach is to be able to go “back in time” and correct the output
of the upstream operator that caused the error. For example, in the
workflow of Figure 1, fixing the null values in the output of Join
requires correcting the output of rows @) and/or @.

2.3 Research Challenges

From a dataflow system’s perspective inflight error detection and
correction entails three major challenges:

Dataflow Model. We require a dataflow model based on directed
cyclic graphs that enables inflight modifications to upstream data
by downstream operators (i.e., error handlers) and re-propagate
updates downstream. This requires incremental and cyclic compu-
tations across dataflow operations. For example, in Figure 1, the
downstream operator 10 upon detecting an error updates the up-
stream data (@ to @), by correcting the output of ocr() in the
above example using an alternative ocr (operator 6’), but only for
erroneous rows detected in the output of operator 9.

Current state-of-the-art dataflow systems can not address this
problem sufficiently. For instance, while Spark [54] adopts a di-
rected acyclic graph based model, Flink [12] require barrier syn-
chronization between loop iterations, leading to inefficiencies in
propagating incremental inflight updates. Naiad [39] supports in-
cremental cyclic computations, but does not support unstructured
loops (as in Figure 1). Moreover, current dataflow systems and data
debugging approaches do not support arbitrary inflight updates
to upstream intermediate output. For instance, while correcting
the output of odt() requires appending a new row to its output,
that of findNP() and ocr() requires editing a row (i.e., deleting the
incorrect one followed by appending a corrected one).

Dataflow Execution. Cyclic graph-based execution model requires
meticulous data synchronization between operators. For instance,
the error handler (operator 10; Figure 1), upon detecting an erro-
neous tuple, can lead to re-processing of row @) via an alternative
ocr() engine (operator 6”). This conceptually requires propagating
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a deleted tuple @ along with a new corrected tuple @ downstream,
which eventually requires deleting the erroneous tuple @) and ap-
pending the tuple @. The challenge here lies in pipeline parallel
execution of the dataflow operators in presence of such inflight
updates to intermediate upstream data.

Error Handling Abstractions. We require convenient abstractions
for error handling operators that can seamlessly be interleaved with
existing dataflow operators. For instance, how can the workflow
developer specify error handlers (such as operators 2, 10, and 11).
Current state of the art dataflow systems do not offer such abstrac-
tions. Moreover, interfaces proposed by data debugging systems do
not lend themselves to user-defined error correction functions.

Overall, none of the existing dataflow systems provide an effec-
tive and efficient way for inflight error handling in ML workflows.

3 REACTIVE DATAFLOW

We now present reactive dataflow, directed cyclic dataflow graphs
for supporting inflight error handling, our preliminary execution
engine that can efficiently run reactive dataflows, and our abstrac-
tions for defining error handlers. We also outline open challenges.

3.1 Directed-cyclic dataflow graphs

A cyclic dataflow graph-based programming model allows data to
“flow” back to an upstream operator. This is crucial for inflight error
handling, where an error might be only evident in the output of
some downstream operator. Let G = (O, ¢ U &) be a directed
cyclic graph, where O is a set of operators (vertices), and £ and &,
are sets of forward and backward dataflows (edges). For example,
Figure 2 shows the reactive dataflow for example workflow of
Section 2 with error handlers (for now ignore the edge labels). Here,
for instance 019 — o5 is a backward edge while 09 — o019 is a
forward edge. A forward edge 0; — o; € &f denotes that output of
the operator o; is consumed by o;.

In reactive dataflow, backward edges 0; — o0; € &}, denote that
the operator o modifies the output of upstream operator o;. Let R
denote the rowset (i.e., the output) of an operator o. Each backward
edge in &, is labelled with an update operation op, which can be an
append (denoted by +) or a delete (-). A backward edge with label

op € {+ -}, denoted o; % oj implies that the edge updates the
output Rj as R; = Rj + A°PR;. In other words, the backward edge

0; % o0;j updates the output R; of 0; by AR; (either by appending
and/or deleting a row). For example, while the edges 019 — o5 and
011 — 04 edit the output rows of operators o5 and og, respectively,
the edge 02 — 01 appends row(s) to the output of o05.

Our goal is to efficiently propagate these inflight updates down-
stream. To effectively and efficiently propagate inflight updates, it is
important to capture the transformation properties of the operators
with respect to handling changes in their inputs. In what follows,
we formally define these properties for the forward edges.

Inflight updates (appends and deletes) may not propagate in-
crementally through operators. For instance, an OrderBy operator
assigning an absolute rank to each input row might require a full
pass over all the rows upon appends and deletes in its input. We

3We do not explicitly consider edit operation(+) here as they are essentially deletes
followed by appends, i.e., A*R = AR+ A*R.
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Figure 2: Reactive dataflow for the example workflow of
Section 2. Solid vertices are dataflow transformations and
gray vertices are error handlers.

say that a forward edge 0; — o; is non-incremental if
Ri=Ri+A0pRi'\»Rj=0j(Ri+AopRi) (1)

In contrast, other operators may be able to incrementally handle
appends and/or deletes. However append in inputs can turn into
deletes in outputs and vice-versa upon forward propagation. To
see this, consider a forward edge 0; — 0j where the operator o;
outputs a rowset of integers and o; computes the minimum. For
Ri = {2,4,3,5}, oj will output R; = {2}. Further, assume that a
backward edge updated R; by deleting 2,ie., R; + A"R; = {4,3,5}.
This update in R; requires updating R; by deleting 2 and appending
3, which may further lead to propagating deletes and appends,
and so on. Therefore, we also carefully capture the monotonicity
behavior in our characterization of incremental forward edges.

We say that a forward edge 0; — o is incremental and monotonic
if an append (delete) in R; leads to appends (deletes) in R}, i.e.,

RiZRi+AopRi’v>Rj=Rj+A0PRj 2)

Likewise, a forward edge 0; — o} is incremental and non-monotonic
if an append or delete in R; leads to both appends and deletes in
Rj,ie.

Js s

R; =Ri +A°PR; ~ Rj =Rj + A"Rj + A™R; 3)

Based on equations (1)~(3), we label each forward edge 0; — o;
based on the edge type and update operation as shown in Table 1.
The reactive dataflow in Figure 2 shows each forward edge along

with its label. For example, 05 o 06 denotes that Rs = Rs+A*R5 ~»
Rs = Rg + ATRgand Rs = Rs + A"R5 ~> Rg = Ry + A" Ry, ic.,
both appends and deletes on the output of 05 can be incrementally
propagated and that the transformation applied by 0g is monotonic.

As another example, o0g iy 09 denotes that R = Rg + A"Rg ~
Ry = Rg + ARy but Rg = Rg + A+R6 ~ Rg = 09(R6 + A+R6), ie.,
while deletes on the output of 0¢ can be incrementally propagated,
appends cannot, and the incremental handling of deletes by o9 is
monotonic.

Open challenges. Note that the label of a forward edge 0; — oj is
a property of the operator o; in terms of handling updates from o;.
While we provide default properties for several standard dataflow
operators, shown in Appendix A, automatically inferring these
properties using static code analysis will be a challenge. For now,
UDFs manually declare these properties for themselves.

3.2 Execution engine

Execution planning. Our prototypical system PoPPER does pipeline
parallel execution of reactive dataflows. To plan pipelines, it first
builds an auxiliary graph that captures blocking and non-blocking

A. Jindal, K. Beedkar, V. Singh, J.N. Mohammed, T. Singla, A. Gupta, K. Choudhary.

Property Ri + A™R; ~ Ri+A™R; ~ Label
Non-incremental o (R; + A™R;) 0j(R; +A™R;) i
Incremental monotonic
Only appends ~ R; +A*R; 0 (Ri + A™R;) imy
Only deletes 0 (R; + ATR;) Rj+A™R;j im_
Both Rj+A*R; Rj+A™R; imy
Incremental non-monotonic
Only appends ~ Rj +A*Rj + A™R; 0j(R; + A™R;) imy
Only deletes 0 (R; + ATR;) Rj+A*Rj +A™R; im_
Both Rj+A*Rj +A™R; Rj +A™Rj +A™R; im.

Table 1: Incremental and monotonic edge properties and
their labels.

behaviors of operators with respect to changes in their inputs. Aux-
iliary graph separates operator o into operators ot and o~ that
append (A*R) and delete (A™R) rows in o’s output R. The blocking
and non-blocking behavior follows directly from the edge proper-
ties in Table 1.

Due to page limit, we skip a more formal treatment of building
auxiliary graph and demonstrate it with an example in Figure 3b
corresponding to reactive dataflow in Figure 3a. We denote non-
blocking behavior of an operator with respect to changes in its
input using solid black edges, i.e., when operators can be pipelined,
and blocking behavior by dashed red edges.

. im, . . .
For example, since 0; — 03, operator oz is non-blocking with

respect to both appends and deletes in its input Ry. Since o o 03,
operator 03 is non-blocking with respect to appends in its input Ry,
but is blocking with respect to deletes in Ry. Further observe that an
append (A*R;) in Ry will lead to both appends (A*R;) and deletes

(A™Rs3) in R3. Likewise, since og 4 o7, operator o7 is blocking with
respect to both appends and deletes in its input.

Using the auxiliary graph, we identify operator pipelines start-
ing from either a source or an operator that consumes dataflow
from a blocking edge, and ends at either a sink or a blocking edge.
Pipelines in reactive dataflow may contain cycles due to backward
edges introduced by error handlers. In Figure 3b, for example, there
are four pipelines, as shown in dashed gray boxes, with Pipeline
3 having backward edges. Since pipelines can overlap, we further
assign operators to non-overlapping stages; operators within each
stage can form a pipeline. In Figure 3b, for example, there are four
stages shown in solid yellow boxes. Stages have dependencies on
one another, following the dependencies in the auxiliary graph.
Stages are executed in order based on their dependencies; for ex-
ample, first, stage 1 and 2 are executed, followed by stage 3, and
finally, stage 4. If a stage is dependent on itself, then a stage may
be run multiple times e.g., stage 3 in Figure 3c.

Execution. Figure 4 shows the internals of POPPER. It spawns
stateless processes, including a driver process and worker processes
to perform computation. It maintains shared states in an in-memory
data store to coordinate among processes. Driver adds all the op-
erators in ready stages to task sets maintained in the data store.
Workers keep polling the task sets to pick an operator and perform
work for them. For each operator instances o} and o; , POPPER
maintains an output stream A*R; and a deletion stream A”R; in
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Figure 3: (a) An example reactive dataflow; (b) An auxiliary dataflow: gray nodes denote dead nodes; dashed red arrows denote
blocking edges; dashed boxes denote operator pipelines; and yellow boxes denote stages; (c) Staged execution.
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Figure 4: POPPER internals.

the data store. When executing an operator, workers read from one
or more streams of parent operators as per the auxiliary graph and
write to the operator’s output and deletion streams.

Error handlers, such as of, apply corrections using instance-
level lineage pointers stored in the in-memory data store. For each
row, these pointers are maintained as two separate sets: backward
pointers identify immediate parent(s) of the row and are used for
doing backward tracing, and forward pointers identify immediate
children of the row and are used for incrementally propagating
deletions. Figure 4 shows an example of how inflight updates are
applied. We omit further details due to space constraints.

Open challenges. Currently, PoPPER only works with static reac-
tive dataflow graphs. In a real-world scenario, programmers can
be allowed to add new error handlers on-the-fly as and when they
observe new errors in production workflows. Allowing such recon-
figurations at runtime will be challenging.

PorPER works on a single machine and maintains all the infor-
mation, such as output rows and lineage, in a common data store.
Sharding this common data store and scaling POPPER to a distributed
fault-tolerant setup is an open challenge.

3.3 Abstractions for building reactive dataflow

Our programming interface is based on the SCOPE language [13],
which provides an easy way to express ML workflows, which are
expressed as transformations over rowsets. Transformations take
rowset(s) as input and output a rowset. Transformations are based

on five primitive SCOPE operators: (i) extractor (for parsing and con-
structing rows from a source like a file); (ii) processor (for row-wise
processing); (iii) reducer (for group-wise processing); (iv) combiner
(for combining rows from two rowsets); and (v) outputter (for writ-
ing rows to a data sink). These primitives allow us to offer a rich
API comprising well-known dataflow transformations such as map,
filter, groupBy, and join, among others, and also allow users to
define their own. For example, the odt() operator in Figure 1 is a
user-defined processor, i.e., it row-wise processes each row (video
frame) to output a rowset of object detections. We refer readers to
[13] for an overview and formal semantics of SCOPE’s operators.

To make inflight error handling a first-class citizen, POPPER pro-
vides two operators: a rowErrorHandler and a rowSetErrorHandler.
Error handlers can be composed with other SCOPE dataflow trans-
formations to detect and correct errors on the fly. In what follows,
we will describe the row error handler interface; the semantics of
the rowset error handler are similar.

A row error handler allows users to specify a condition on a
row to detect an error, which when holds, executes a user-defined
correction function to “edit” the output row(s) of some upstream
operator. More formally, rowErrorHandler interface provides three
functions that the user needs to implement.

»detect(f:row)— bool: It is used for error detection. The input is
a UDF that receives a row and outputs true or false depending on
the condition it evaluated on the row.

»correct(f:row)— None: It is used for error correction. The input
is a UDF that receives a row and corrects it by either appending
or deleting or both any of its ancestor rows, i.e., output rows of
upstream operators from which the current row was derived.
»eventually(f:row)— {PASS,DROP }: It is used for specifying the
behavior of the error handler upon detecting an error in the row a
second time.

In the following, we give example of error handling operator 10
in workflow of Figure 1. Examples of error handling operators 2
and 11 can be found in Appendix B.

Example 1: Implementing an error handler (operator 10) that detects
null values in the output of join in Figure 1, and corrects the output of
the upstream findNP() operator.

1 class JoinErrorHandler1(RowErrorHandler):

def detect(self, row):
return (not row["r_v_num"] or not row["f_type"])

b_box = row["n_box"]

2

3

4

5 def correct(self, row):

6

7 row.edit ({"n_box": findNP2(b_box)3})
8

9 def eventually(self, row): return PASS
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The above user-defined error handler first checks for the null
values (line 3) in columns r_v_num and f_type, and if present, cor-
rects the output of the upstream findNP() operator. Observe that
here the user-defined error correction function (lines 6 and 7) first
fetches the b_box from the upstream operator and then attempts
to corrects n_box by applying an alternative findNP2 function. Our
API includes convenient methods to track the lineage in order to
fetch and correct outputs of upstream operators. Also note that the
eventual behavior of the error handler is set to PASS (line 9), which
means that the handler will forward the erroneous tuple if it again
detects an error the next time it receives it. A later error handler,
operator 11, will correct the erroneous tuple.

Open challenges. Our current API requires the workflow devel-
oper to know the schema-level lineage, i.e., upon catching an error,
which upstream column(s) need to be corrected. A friendlier de-
velopment environment can be devised that uses static analysis to
identify lineage to simplify writing error handlers.

4 PRELIMINARY EXPERIMENTS

Our goal in developing POPPER is to support error detection and
error correction in ML workflows. We develop a few ML workflows
to investigate the following questions:

» Can error detection and error correction provided by PoPPER
improve both precision and recall?

» Can PoprpER reduce the cost of running ML workflows? We evalu-
ate two types of costs: (1) runtime cost measured by the end-to-end
execution time; and (2) human-in-the-loop cost, measured by the
number of post-facto manual corrections, needed by the workflows.
» How does the end-to-end runtime of POPPER compare with other
dataflow systems? Wherever possible, we implement error cor-
rections by following the approach to support iterations in other
dataflow systems.

» How does the runtime of POPPER grow as we increase the per-
centage of errors in data?

4.1 Setup

We use six real-world ML workflows shown in Figure 5 and extend
them with error handlers (shown in gray nodes). Workflows 1-3
are taken from HuggingFace [26] and they have the same structure.

1) HFP1: Text question answering workflow receives text contexts
and questions about contexts from SQuaD 2.0 [43] dataset. The
workflow invokes TinyBERT [31] to provide answers to questions.
2) HFP2: Visual question answering workflow receives images and
questions about the images from VQAv2 [22] dataset. The workflow
invokes VIiLT-b32 [34] model to provide answers to questions.

3) HFP3: Image classification workflow uses the DeiT tiny [49]
model to classify images from ImageNet-1K dataset [18] .

We extend each of these pipelines with an error handler that detects
an error if the confidence of the inference is below a threshold and
corrects it by running a heavier ML model. Error handler corrects
errors using RoBERTa [38], BLIP [36], and ViT [50] for HFP1, HFP2,
and HFP3 respectively.

4) OBjTRACK workflow inspired from [21] uses a light-weight CSRT
tracker [37] to track an object in input videos from the OTB2015 [51]
dataset. Error handler verifies every sixth frame with a heavier
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Figure 5: ML workflows used for experiments.

model SeqTrack [14]. If the bounding boxes from the two models
have an IoU that is below a threshold, the error handler updates
the bounding box with the box found by the SeqTrack model.

5) AVDEBUG workflow identifies frames containing four or more
cars from a video feed of the front camera of a moving car. Such
workflows are used by autonomous vehicle researchers looking for
specific traffic scenarios [8, 33]. The workflow runs YOLO [45] on
the camera images to find objects and their bounding boxes. If YOLO
found less than four cars with high confidence, the RowSetErrorHandler
Confidence detects an error and invokes SECOND model [53] on the
corresponding LIDAR data to correct the boxes. The input is given
from the NuScenes [11] dataset.

6) CARDs workflow extracts ‘first name’, ‘surname’, ‘date of birth’,
‘date of issue’, ‘date of expiry’, ‘gender’, and ‘place of birth’ from
rotated card images from the MIDV 2020 [10] dataset. The workflow
first crops the card by finding a rectangle in the image. RowErrorHandler
Face detects an error if a face cannot be detected in the cropped card
image. It corrects the error by trying other orientations until it can
find a face. Since cards often have colorful backgrounds, Channel
removes background color channels to make the card amenable
to OCR. OCR runs EasyOCR [19] to get text from images. A ResNet
classifier identifies the country of the card and routes it to appro-
priate LayoutLM model [52] fine-tuned for that particular country’s
card. Consistent is a sequence of three error handlers which check
that fields are not null and that dates are well formatted. When they
detect errors, they first try to select other color channels, then try
Tesseract OCR engine [48], and finally retry with the second pre-
diction from the Classifier. This order is decided by the observed
error rate of each upstream operator i.e., changing channels fixes
more errors than changing OCR engine which fixes more errors
than changing card class. See Appendix C for details.

All experiments are done on a server with Intel Xeon Gold 6330
and an Nvidia A40 GPU. PoppER is implemented in 13KLOC and
uses Redis as its data store. We spawn 10 POPPER workers.
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4.2 Effectiveness of Inflight Error Handling

In our first set of experiments, we evaluate the effectiveness of
inflight error handling considering precision and recall of ML work-
flows. We compared POPPER against two baselines. BASELINE 1 is a
workflow without any error handler, and BASELINE 2 has an error
handler that only does error detection, i.e., the error handler sim-
ply drops data upon detecting an error. We show the effectiveness
results in Figure 6 for workflows HFP1, HFP3, AVDEBUG, and CARDS.
The numbers in the Figure denote F1 scores.

We observe that BASELINE 2 improves precision but achieves a
lower recall over BASELINE 1. This is because detecting errors and
dropping erroneous data turns false positives (incorrect values) to
false negatives (no value). We also observe that for all workflows,
dropping erroneous data reduced F1 score. This is most pronounced
in the CARrDs workflow, where F1 score drops from 0.90 to 0.43.

It is worth nothing that for all workflows, error detection and
correction always leads to a higher recall. However, we observe
that with error correction, precision can reduce compared to BASE-
LINE 2. Precision is affected by the specified “eventual” behavior
of the error handler (recall Section 3.3). For HFP1, HFP3, and AVDE-
BUG, the eventual behavior of error handlers are set to PASS i.e.,
if the error handlers detect an error again after making a correc-
tion, they forward the row. This explains slightly lower precision
of these workflows. We refer to Appendix D for further discus-
sion on limitations of inflight error handling. Overall, we observe
an improvement in F1 score from 0.05 up to 0.44 across different
workflows due to inflight error handling.

We conclude that inflight error handling can improve both precision
and recall thereby increasing the effectiveness of ML workflows.

4.3 Cost Improvements with Error Handling

Human-in-the-loop cost. Improvements in accuracy directly re-
duce the human-in-the-loop (HIL) cost, i.e., the number of times
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a human has to correct errors in workflows. We conduct two sup-
plementary experiments that measured the HIL cost for HFP1 and
carps workflows. For HFP1 (text question answering) we split the
dataset into chatbot-like conversations. A conversation is a group
of questions about the same text context. If the workflow misses
the answer to any of the questions then it has to be sent to a human
for examination. Likewise, for the caArRDs workflow, if any of the
seven fields are extracted incorrectly then the card has to be sent
to a human for manually correcting incorrect fields.

For the uFP1 workflow, error handling reduces HIL cost by 26.3%:
from 2030 to 1496 conversations required to be sent to human for
correction. Similarly, for caArDs workflow it reduces HIL cost by
39.4%: from 307 to 186 cards required to be sent to human.

Infrastructure cost. In our next set of experiments, we evaluate
the impact of error handling and the trade-off it offers considering
accuracy and runtime—which correlates with infrastructure costs.

We compare ML workflows HFP1, HFP2, HFP3, and OBJTRACK
with two baselines: BASELINE 1 that uses “light” ML models; and
BASELINE 2 that uses “heavy” ML models. In general, light ML
models trade off accuracy for faster inference time than heavy ML
models. Indeed, we observe in Figure 7 that BASELINE 1 (with light
ML models) is 2-10x faster, but achieves 9-43% lower accuracy
than BASELINE 2 (with heavy ML models).

Extending BASELINE 1 with a carefully designed error handler
offers a better trade off. In particular, error handling allows improv-
ing accuracy of workflows with light ML models by only invoking
the heavy ML model after detecting an error. For example, for the
OBjTrACK workflow in Figure 7, error handling can improve the
accuracy of the workflow with light ML model from 0.54 to 0.66,
closely matching the accuracy of the BASELINE 2 workflow with
heavy ML model, which is 0.67. Moreover, it does so at just half the
runtime of the BASELINE 2 workflow with heavy ML model.

For HFP2 and HFP3, workflow with error handling achieves an
accuracy that is slightly lower compared to BASELINE 2 (with heavy
ML model). This is because light ML models sometimes output
wrong answers with high confidence and thus such errors were not
detected by error handlers.

Overall, combining light and heavy models with POPPER’s error
handling capabilities offer a better trade off between accuracy and
runtime, saving both HIL and infrastructure costs.

4.4 System Efficiency

We now evaluate PoPPER’s efficiency with respect to handling in-
flight dataflow updates. In particular, we evaluate POPPER’s pipeline
parallel execution that allows to pipeline dataflow modifications via
backward edges. We compare POPPER’s staged execution to that of
Flink’s [20] and Naiad’s [39] iteration approaches as they also allow
executing cyclic dataflows. It is worth noting that workflows such
as those in Figure 5 cannot be expressed directly in Flink, Naiad
and other dataflow systems as they lack native support for inflight
error handling. Therefore for this evaluation, we simulate Flink’s
and Naiad’s iterative computation in POPPER.

We consider workflows CARDS, OBJTRACK, and AVGDEBUG for
which Figure 8 shows the runtimes. We first observe that Flink-
style and Naiad-style iterations cannot handle cArps workflow
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since they only support nested loops whereas the set of Consistent
error handlers in the cArps workflow make unstructured edits.
PopPER’s staged execution and Naiad-style iterations outperform
Flink-style iterations by 83.7% for oBJTRACK. This is due to pipeline
parallel execution in POPPER, enabling faster operator pipelining
between loop iterations. Conversely, Flink-style iterations neces-
sitate barrier synchronization, resulting in a 6X slower runtime
for oBJTRACK. This is because the SeqTrack verifier waits for the
CSRT tracker to traverse the entire video before each update, sig-
nificantly slowing down the workflow. For AVGDEBUG, all three
iteration styles exhibit similar runtimes due to a pipeline breaker

groupby Lconfidence, preventing update pipelining.

Scalability with respect to errors. We additionally evaluated Pop-
PER’s performance by gradually increasing the percentage of er-
roneous inputs. Results in Figure 9 show that the runtime of each
workflow increases proportionally with the increase in number of
errors. For example, a 20% increase in number of errors increases
the runtime by 63% for the carps workflow, by 37% for the oBj-
TRACK workflow, and by 9% for the AvepEBUG workflow. This is
expected as the number of iterations due to error handling also
increases with more errors.

In sum, we conclude that POPPER provides an efficient and versatile
execution engine to run ML workflows with inflight error handling.
PorrERr offers good scalability with respect to errors in the data.

5 RELATED WORK

We now relate the ideas put forward in this paper to existing prior
work, which can be categorized into:

Dataflow engines. Dataflow systems such as MapReduce [17]
and others [13, 29] adopt an execution model that is based on
directed acyclic graphs. Hence, these systems cannot be used for in-
flight error handling that requires support for cycles. Spark [54] and
Flink [20] support cyclic computations but requires barrier synchro-
nization between loop iterations. As discussed in Section 4.4, this
incurs overhead compared to POPPER’s execution which supports
pipelining between loop iterations. Timely dataflow [39] supports
incremental and iterative computations, but like Spark and Flink it
does not support unstructured loops such as in the cArDs workflow.
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In contrast to these systems, POPPER’s execution engine supports
incremental and cyclic computations, specific to inflight error han-
dling. In addition, none of the existing dataflow systems support
abstractions for error detection and correction.

Incremental computation. Inflight error handling is reminiscent
to supporting incremental updates, explored in incremental view
maintenance [3, 9, 40, 55], streaming computation [5-7, 12, 15],
and provenance-based selective replay [27]. These systems typi-
cally handle updates at the input, such as base table updates in
incremental view maintenance or stream appends in streaming
computation. These updates are controlled externally, therefore
they lack visibility into inflight updates. In contrast, POpPER allows
updates at intermediate operation outputs and provides visibility
into the location of error handlers and type of update operations
(+, —, %) for planning stages.

Data Debugging. Error handling in workflows is also closely
related to data debugging in dataflow systems. Systems such as Am-
ber [35] and those based on Spark including Titian [28], BigSift [24],
BigDebug [23], and TagSniff [16] support debugging primitives such
as breakpoints (to pause and resume execution) and watchpoints
(to inspect intermediate data). While these can be used for error
detection, they offer limited support for inflight error correction.
Vega based on BigDebug [23], aims to supports incremental updates,
but is limited to incremental updates supported by Naiad, as it is
based on differential dataflow [2], which has limitations discussed
above. Overall, current debugging systems do not offer inflight
error handling that involve both error detection and correction.

Model Assertions. [33] show how data consistency checks, called
model assertions, can detect model errors at runtime. PTAV [21]
and Focus [25] leverage heavy-weight models to detect and correct
errors that are made by light-weight models in computer vision ap-
plications. PICARD [46] improves the accuracy of Text2SQL flow by
detecting incorrect token predictions on-the-fly using a SQL parser.
Detecting and correcting errors in such a manner have shown to im-
prove the end-to-end accuracy. POPPER’s error handler also supports
such assertions, and in addition supports scenarios where errors can
only be evident later in the workflow and corrections lead to updat-
ing upstream dataflows that are efficiently propagated downstream.

6 CONCLUSION

In this paper, we have proposed reactive dataflow, a new program-
ming model that provides convenient abstractions for specifying
user-defined error-handling operations. These error handlers inte-
grate seamlessly with traditional data processing operations. We
developed a categorization of dataflow edges based on the oper-
ators’ transformation properties, which enable efficient pipeline
parallel execution. We have built a prototype PopPPER and have
shown its efficacy in executing ML workflows, which are prone
to errors introduced by ML models. Our evaluation showed that
PoprER’s inflight error handling capabilities allow for improving
the accuracy and reducing the cost of ML workflows and that Pop-
PER as a dataflow system is efficient. We have listed some open
challenges that we plan to work on in future. Most importantly, we
plan to extend POPPER to distributed shared-nothing environments.
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APPENDIX
A EDGE PROPERTIES

Table 2 gives some examples of built-in transformations, their prop-
erties, and forward edge labels. For example, a map transformation
is incremental and monotonic with respect to both appends and
deletes in its input. An inner hash join is incremental and mono-
tonic for both appends and deletes in its left input, but for only
deletes in its right input. This means that appending a row in its
right input requires re-computation of the join. As another example,
the left join transformation has the same property as inner join
for its left edge. However for deletes in its right input, it is now
non-monotonic, i.e., deleting rows from its right input might lead
to an append to its output.

B INFLIGHT ERROR HANDLING API
EXAMPLES

We provide some more examples to illustrate our error handling
APIs. In particular, we show the implementation of error handling
operators 11 and 2 in Figure 1.

Example 2. Implementing an alternative error handler (operator 11)
that detects null values in the output of join in Figure 1, and corrects
the output of the upstream ocr () operator.

1 class JoinErrorHandler2 (RowErrorHandler):
def detect(self, row):
return (not row["r_v_num"] or not row["f_type"])

2

3

4

5 def correct(self, row):

6 n_box = row["n_box"]

7 row.edit({"v_num": ocr2(n_box)3})
8

9 def eventually(self,

row): return DROP

10

A. Jindal, K. Beedkar, V. Singh, J.N. Mohammed, T. Singla, A. Gupta, K. Choudhary.

The above user-defined error handler tries to fix the null values
by first fetching the input n_box and correcting ocr() output by
using an alternate ocr2 function (lines 6 and 7). In this example,
it might be the case that ocr2 also causes an error that eventually

leads to null values in the output of join. To handle this, we define
the eventual behavior of the error handler to DROP (line 9), which

implies that the error handler will not forward the erroneous row
downstream.

Example 3. Implementing an error handler (operator 2) to detect
and correct “flickering" objects in the output of object detection and
tracking in Figure 1.

1 class ODTErrorHandler (RowsetErrorHandler):

2 self.error_idxs = []

3

4 def detect(self, rowSet):

5 # rowSet is a time-sorted detections of the same obj_id
6 for idx in range(len(rowSet)-1):

7 rowl, row2 = rowSet[idx], rowSet[idx+1]

8 if rowl["f_id"1 + 1 != row2["f_id"]:

9 self.error_idxs.append(idx)
== 0:

11 if len(self.error_idxs) return False

12 return True

14 def correct(self, rowSet):

15 for idx in self.error_idxs[:-1]:

16 prev_row, next_row = rowSet[idx], rowSet[idx+1]
17 fid1, fid2 = prev_row["f_id"], next_row["f_id"]
18 bbox1, bbox2 = prev_row["bbox"], next_row["bbox"]

19 for fid in range(fidl + 1, fid2):
20 bbox = interpolate(bbox1, bbox2, fidl, fid2, fid)
21 prev_row.duplicate({"fid": fid, "bbox": bbox})

23 def eventually(self, rowSet): return PASS

Example 3 shows how a rowset error handler can be used to
detect the flickering error caused by missing object detection in
workflow of Figure 1. In contrast to a row error handler, a rowset
error handler allows processing a set of rows to detect and correct
errors. Note that in the above example, a groupBy(obj_id) (not
shown for brevity) precedes the error handler. Here the detection
function (lines 5-12), checks successive f_ids for missing detection.
For instance, if the model detected the same truck (e.g., obj_id=3) in
frames 3 and 5, but not in frame 4. The correction function (lines 15—
21) simply duplicates rows for missing detections, i.e., it duplicates
the previous row with updated f_id and bbox.

C ONE SIZE DOES NOT FIT ALL

In our ML workflows, we find that there is no combination of ML
models and other workflow settings that works best for all inputs.
For example in the CArRDs workflow discussed in Section 4, we
found that if we use all color channels with EasyOCR without error
handling, we could correctly extract 83.1% of all the fields across all
the cards. But when we remove blue and green channels from the
input image, we can correctly extract 4.7% new fields. We cannot
always remove blue and green channels, because it misses 6.8%
fields extracted by the original workflow. Similarly, changing OCR
engine to Tesseract can extract 2.7% new fields.
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Transformation (w/ edge labels)

Transformation property

Discussion

it Ri=Ri+A+Ri\/>Rj:Rj+A+Rj

Map

Map transformations are monotonic and can incrementally

R; Rj Ri=Ri+A"R;~ R; =Rj +A"R; handle both appends and deletes.
ox Riy =Ri, +A™R;, ~ Rj = Rj + A*R; Hash join builds a hash table from the right inputs and
Riy . Riy =R; +A™R;, ~ Rj =Rj +A™R; uses it to join left inputs. Therefore, it can incrementally
Pl J Ri, = Ri, + A*R;, ~ R; = R; HashJoin R, handle appends only in left inputs. It can incrementally
Riy Riy =Riyy +A"R;, ~ Rj =Rj +A"R; handle deletes from both inputs using lineage.
ox Riy =Ri, +A™R;; ~ Rj =Rj + A*R; Similar to hash join with the difference that deleting from
Riy . Ri; =R;; +A"R;; ~ Rj =R; + A™R; right input is non-monotonic: deleting r;, from R;, may
R J Ri, = Ri, + A™R;, ~ Rj = Ry LeftJoinR;, delete a (ri,,ri,) from R; and append a (r;;, null) to R;.
2 Riz—Riz"’A_Riz’\’)Rj :Rj+A_Rj+A+Rj

i Ri =R; + A*R; ~ R; = OrderBy(R;)
[w/ absolute ranks] Ri=R;+A™R; ~ Rj = OrderBy(R;)

Both deleting a row from input and appending a new row
to input requires re-assigning new absolute rank to many
rows. Hence, it is non-incremental.

Ri = R; + A*R; ~ Rj = OrderBy(R;) Deleting a row from input can just delete its corresponding
R [w/ relative ranks] J Ri=R;+A™R; ~ R; =R; +A"R; row from output without updating ranks of every other
row.
Ri =R; +A*R; ~ R; =Rj + A"Rj + A*R; Appends are incremental and non-monotonic: a new input
Ri [non invertible] Rj Ri =R; + A™R; ~ Rj =Min(R;) row might delete the old minimum from the output and
append a new minimum to the output.
1 . Ri=R; +A*R; ~ R; =Rj + A"Rj + A*R; In addition to handling appends incrementally as above,
R finvertible] J Ri=R;+A"R;~ R;j =R;j + A"R;j + A*R; maintains a min-heap to similarly handle deletes.

Table 2: Example transformations with transformation properties and forward edge labels.

EasyOCR
Carps with all colors and CArDs with red color 76.3%
Carps with all colors but not CARDs with red color 6.8%
CARDSs with red color but not CARDS with all colors 4.7%
Neither CArDs with all colors nor CARDs with red color | 12.2%
All color channels
Carps with Tesseract and CArDs with EasyOCR 36.9%
Carps with EasyOCR but not CARDs with Tesseract 46.2%
CArps with Tesseract but not CaArps with EasyOCR 2.7%
Neither Carps with EasyOCR nor CARDs with Tesseract | 14.2%

Table 3: Percentage of fields correctly extracted by variations
of Carps workflow (Section 4) using different workflow set-
tings without error handling.

D LIMITATIONS AND DISCUSSION

Inflight error handling improves both precision and recall (Figure 6).
But, we observe that even with inflight error handling, it is often
not possible to obtain perfect precision and recall. We observe three
reasons for this. We give examples from the Carps workflow from
Section 4 to describe them.

11

Correlated errors. Using alternative models and other workflow
parameters to correct errors is successful only if the errors made
by these alternatives are uncorrelated. This may not always be the
case. For example, all the alternatives in CARDS workflow extract
gender as ‘F’ when the ground truth is ‘M’ for est_id/54. jpg. In
such scenarios where alternatives make the same errors, correcting
errors is not effective. Therefore, we expect ML models trained
using the same training dataset will not make up for effective error
correction as they may have correlated errors.

Imperfect assertions. For aze_passport/68. jpg, the initial CARDS
workflow extracts name as DURNA DILAVAR QIzI’ when ground
truth is DURNA’. Running the other OCR engine correctly extracts
the name but it does not get to run for this card. This is because the
erroneous extraction also passes the error detection logic which
just checks for a non-empty name. Detecting all errors may not
always be possible.

Failure to apply corrections. After catching a mistake made by
the Crop step, Face tries various orientations and model thresholds
to find an orientation in which it can find a face. But it fails to
find such an orientation for 5 cards, such as esp_id/12. jpg. This is
because the face detection model itself fails to find the face even in
the correct orientation.
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