
Automated Debugging and Optimization

Abhilash Jindal

Fix
automatically

Suggest program
fixes

Generate error reports

Reveal system properties

Black box system

Decreasing
human

intervention

Increasing
difficulty

Figure 1: Automated debug-
ging and optimization: Ad-
vanced tools reduce human in-
tervention but are harder to
build.

My research vision is to automate the “creative” task of debugging
and optimization– the task of finding bugs (or performance bottlenecks)
in a software and making modifications to fix the software bugs (or
improve software performance). To this end, I study program analysis
and OS techniques to simplify the debugging and optimization efforts
of programmers interacting with complex computer systems.

Debugging and optimization are largely ad-hoc manual processes
taking up 35-75 percent of programmers’ time costing more than $100B
annually1. This process becomes further exacerbated in the modern
programming paradigm where programmers stand on the shoulder of
giant software frameworks to quickly program complex systems, but
have a limited understanding of the intricacies of the underlying sys-
tem. Simplifying this process will make developer productivity sky-
rocket and make complex computer systems more accessible to novice
programmers. For example, empowered by powerful mobile frameworks
and associated tooling, Masako Wakamiya, a 79-year old self-taught Japanese lady, was able to create
a widely popular iOS game, hinadan, for the elderly. My research tackles challenges in making existing
developers lot more productive and in making a wide range of complex systems more accessible so that
many would-be developers like Masako can create socially beneficial applications.

The Sisyphean journey to full automation can be broken down into a few high-level system milestones
illustrated in Figure 1. Each milestone reduces human effort but offer challenges of increasing difficulty:

• Reveal system properties. What are the right metrics to collect? How can these metrics be accu-
rately collected with minimal monitoring overhead in production environments?

• Generate error reports from runtime measurements or during static analysis. What information
should be surfaced in an error report to make it more actionable? How to assist developers to
quickly arrive at a fix from an error report? How to generate errors with minimal false negatives
and false positives?

• Suggest program fixes. How to bridge the gap between low-level error signatures and high-level
program fixes? How to navigate the vast search space for potential fixes and optimizations?

• Fix automatically. How to create a repository of precise bug definitions? How to work with impre-
cise static analyses to generate precise fixes? How to reason about program’s semantic properties
from program syntax?

My thesis research [1] addressed some of these ongoing challenges in the context of mobile energy
debugging and optimization. Due to the diversity of these challenges, my work is motivated by, and in-
turn, motivates research in other areas, including algorithms, HCI, and programming languages. Figure 2
shows my research at a glance, grouped into simplifying debugging specific bug categories and uncovering
generic optimizations. I have also made research contributions in creating system-wide improvements to
address holistic system bottlenecks identified by my research. Below, I summarize my research followed
by real-world impact and my future research plans.

Debugging specific bug categories

When system requirements change, systems undergo paradigm shifts that may require creating new
abstractions. Such abstractions, if not designed correctly, seriously encumber programming, making
writing correct programs difficult. I studied one such paradigm shift in the power management of
smartphones which gives rise to a whole new class of bugs, sleep disorder bugs. These bugs plague the
complete smartphone software stack: apps, framework, kernel, and device drivers.

1The Debugging Mindset, Devon H. O’Dell, ACM Queue, Volume 5, issue 1, 2017.

1

Black boxsystem

Reveal system
properties

Generateerror reports

Suggestprogram fixes

Fix
automatically

Eurosys’13: Sleep conflicts

ATC’16: Sleep induced time bugs

SIGMETRICS’15: Smartphone
energy drain in the wild

OSDI’18: Differential energy profiling

System-wide
improvements

MobiCom’15: Smartphone
background energy
optimization

WWW’15: Smartphone
radio bundling

Mobisys’12: No-sleep bugs

Debugging
specific bugs

categories

Uncovering
generic system
improvements

Figure 2: My thesis research at a glance. Mapping conference papers to the automated diagnosis space
for uncovering generic optimizations and for debugging specific bug categories.

2. Under-sleep bug
Wastes battery

1. No-sleep bug
Drains battery indefinitely

3. Over-sleep bug
Affects program correctness

Figure 3: A taxonomy of sleep-disorder
bugs. The green wiggles show the time-
critical sections and the red bars show the
code section across which the CPU is kept
awake, by holding a wakelock.

Rise of sleep disorder bugs. To save the crucial battery,
smartphone OSes aggressively suspend the system on chip
(SoC) after a brief period of user inactivity. However, this
can hurt program correctness as the program may be in the
middle of a time-critical section whose execution needs to be
continuous, i.e., not disrupted by the system going to sleep.

To prevent phones from suddenly going to sleep during
such time-critical sections, the OS provides explicit power
control mechanisms— wakelocks with acquire and release
APIs. This encumbers programming as now developers have
to juggle these power control APIs along with the normal
program logic to ensure the correct operation of their apps.
Since developers typically have no training in doing so, they invariably make programming mistakes as
evidenced by hundreds of such mistakes found in my research across the smartphone software stack. A
direct consequence of such mistakes is that the CPU can go to sleep when it is supposed to stay awake,
and vice versa. I term such programming mistakes that alter program semantics or cause unexpected
battery drain due to smartphone sleep behavior as sleep disorder bugs.

Characterizing sleep disorder bugs. I conducted the first characterization study of time-critical
sections to understand the properties of code sections whose execution needs to be continuous. I further
developed a taxonomy of sleep disorder bugs as shown in Figure 3.

(1) No-sleep bugs happen when a wakelock is acquired correctly, e.g., to prevent the CPU from going
to sleep, but is not released in some paths of program execution. The consequence is that the CPU
cannot go to sleep, draining the phone battery indefinitely.

(2) Under-sleep bugs happen when wakelock APIs are properly matched, i.e., each wakelock acquire
is later matched with a wakelock release, and hence the CPU can eventually go to sleep. However, the
code section protected by the wakelock is larger than necessary keeping the CPU awake longer than
necessary, wasting energy.

(3) Over-sleep bugs happen when the developer does not protect a time-critical section with wakelocks,
creating the possibility of system suspend in the middle of the time-critical section. This type of bugs,
unlike no-sleep and under-sleep bugs, can affect the correctness of the app.

The taxonomy was published in HotPower 2013 [2], workshop on power-aware computing colocated
with SOSP 2013. This taxonomy enabled systematic treatment of sleep disorder bugs.

Treating sleep disorder bugs. Treating sleep disorder bugs requires us to automatically find time-
critical sections, find wakelock-protected code sections where the CPU is kept awake, and then report
mismatches between the two code sections. However, automatically finding time-critical sections, in
general, is a hard problem since it requires guessing programmers’ intentions from their programs’ source
code and runtime behaviour.

Abhilash Jindal - Research statement 2

My research makes progress on this challenge by building specialized solutions that target individual
classes of sleep disorder bugs. These bug classes contain hints in the program’s source code or its runtime
behaviour that enable finding time-critical sections and wakelock-protected code sections automatically.

Finding no-sleep bugs requires finding wakelock-protected code sections but does not necessitate
finding time-critical sections. In [3], I built a static analysis tool based on reaching-definitions analysis
that finds wakelock acquires that are never followed with a wakelock release on some program execution
paths. The tool detects no-sleep bugs in the Android framework and apps.

In [4], I tackled a subclass of over-sleep bugs in device drivers called sleep conflicts. Sleep conflicts
happen when a device driver cannot make progress in its execution, because of the CPU sleeep, to drive
the power transition of its device back to its base power state. This leaves the device in a high power
state, leaking battery. I built a runtime system that monitors the power state of all the devices by
intercepting calls between the device driver and the hardware. This system automatically finds and
mitigates sleep conflicts by ensuring devices power states at the time of system suspend.

In [5], I found another subclass of over-sleep bugs, sleep-induced time bugs, which manifest as logical
errors from unexpected CPU sleep during the manipulation of time-related values. Here, the time-critical
sections can be guessed because of well-defined time APIs accessed in the source code. I built a static
analysis tool that uses use-def, def-use chains to report sleep-induced time bugs in the Linux kernel.

The tools collectively found hundreds of new bugs across all software layers including popular apps
like Facebook, Android framework, Android kernel, and its device drivers. These works were published
in Mobisys 2012 [3], Eurosys 2013 [4], and ATC 2016 [5], leading conferences in mobile systems and
operating systems. Sleep disorder bugs are not a solved problem with new research continuing to evaluate
better design of power-control APIs2 and are likely to further increase in prevalence with more low-power
devices making their way into consumer lives.

Uncovering generic optimizations

While effective, the systems built in the previous approach can only find bugs that belong to specific bug
categories. The holy grail of automated debugging and optimization is to build general purpose tools that
can uncover arbitrary system improvements. I studied this problem in the context of improving battery
drain of smartphones. I did first large-scale measurements to identify holistic bottlenecks, proposed
practical solutions to address major bottlenecks, and researched ways to suggest program improvements
to developers for reducing their program’s battery drain.

Measuring battery drain behavior of smartphones to identify holistic bottlenecks. I believe
it is imperative to get a holistic view of the system’s performance landscape before diving into its
optimization. Although measuring each system comes with its own set of unique challenges, they share
some common hurdles that need to be overcome: 1. developing a low-overhead and accurate logging
mechanism to measure system’s performance metrics and 2. incentivizing a large number of users for
data collection.

To overcome these problems in the scope of measuring how smartphones drain the battery, I imple-
mented an Android app called Estar. Existing power accounting mechanisms in the literature required
collecting extensive triggers, such as packet-level trace, that could not be collected in an in-the-wild app
as they require root-level privileges. In Estar, I developed accurate power accounting mechanisms and a
sophisticated logging mechanism with ≤0.6% energy overhead. Estar incentivized users by showing them
an “energy-star” rating before they install any new app from Google Play. I generated this energy-star
rating by crowdsourcing data from all our users. Without any marketing expenditure, Estar quickly
became the top-trending app on Google Play, providing data from over 100,000 users from 56 countries.
This measurement study was published in SIGMETRICS 2015 [6], the top publication venue for system
measurement research.

Improving system-wide bottlenecks. The measurement study highlighted that the background
apps and services during screen-off intervals drain 23% of the total phone battery drain on average.
Driven by this, I closely examined their behaviour and found a surpising inefficiency – many apps were
draining battery during the screen-off interval, downloading content from remote servers, despite not

2A Case for Lease-Based, Utilitarian Resource Management on Mobile Devices, ASPLOS 2019.

Abhilash Jindal - Research statement 3

being opened by the user! To formulate this systemic inefficiency, I defined a mathematical formulation,
background-foreground correlation (BFC), to measure the usefulness of app background activities for
each app. I further designed a screen-off energy optimizer on Android called HUSH that monitors the
BFC of all apps on a phone online and automatically identifies and suppresses app background activities
during screen-off intervals that are not useful to the user. In doing so, HUSH saves the screen-off energy
of smartphones by 15.7% on average with minimal impact on the user experience with the apps. These
results were published in Mobicom 2015 [7], the top conference on mobile computing.

Suggesting program improvements to developers for improving performance. Over the
decades, the systems community has created many interesting profilers for automatically or semi-automatically
narrowing the program scope wherein making a modification is likely to enhance software performance.
However, these profilers still fall short of the holy grail as after being presented with performance hotspots,
developers do not have any guidance on how to proceed with the remaining optimization task: 1. Is
there a more efficient implementation? 2. How to come up with a more efficient implementation?

My research made progress on these hard challenges in the context of mobile energy profilers by
making the following key observations about mobile app development: (1) For every popular app in the
app market, there are a few dozen competing apps that implement similar app features, (2) Similar apps
can differ significantly in energy drain in performing similar app functions, (3) Mobile apps heavily use
common framework services, such as the Android framework, and these framework code segments show
up in energy hotspots lot more often than the code written by the app programmers.

I leveraged these insights in DIFFPROF, a differential energy profiling tool for the energy optimization
of smartphone apps. DIFFPROF employed a novel tree-matching algorithm for comparing energy profiler
outputs of two similar apps and found 12 energy improvements in popular apps. The case studies
showcased that DIFFPROF provides developers with actionable diagnosis beyond a traditional profiler:
it identifies non-essential (unmatched or extra) and known-to-be inefficient (matched) tasks, and further
allow developers to quickly understand the reasons and develop fixes for the energy difference from a
competing app with minor manual debugging efforts. The research results were published in a top venue
in the systems field (OSDI 2018) [8] and led to an NSF grant 1718854 of $475k.

Research impact

I get excited about creating systems that directly improve people’s lives and are grounded in strong
foundations. In addition to simplifying programmers’ debugging and optimization efforts, my research
has made significant advances towards extending the limited battery life of smartphones making societal
impact on people across the economic spectrum.

• The papers on sleep disorder bugs together laid the
foundation for systematic treatment of misuse of power
control APIs. The tools we built in the papers collec-
tively found hundreds of new bugs across all soft-
ware layers including popular apps like Facebook, An-
droid framework, Android kernel, and its device drivers.
The papers inspired a large number of follow-on work
by the research community with over 350 citations
(Google Scholar) and were widely covered in the media.
The work started a discussion among the major players
of the mobile ecosystem3about the misuse of wakelock
APIs and further inspired several development tools for
detecting these bugs such as Wakelock and Wake-
lockTimeout lint checks in Android Studio and
reporting stuck wakelocks to app developers in
Android Vitals.

15.7

3.5

22.3

11.1

22.9

6.0

18.5

Energy by foreground apps excluding screen
Energy by CPU idle during screen on
Screen energy
Energy by background apps and services during screen on
Energy by background apps and services during screen off
Energy by CPU idle during screen off
Energy by SOC, WiFi beacon, WiFi scan and cellular paging

Figure 4: Average daily battery drain
breakdown across 2000 users from [7].

• Our measurement study results (such as shown in Figure 4) drew several implications for major
players in the mobile ecosystem: the phone vendors, SOC vendors, cellular carriers, and app

3Wakelocks: Detect No-Sleep Issues in Android Applications. Intel Developer Zone, 2013.

Abhilash Jindal - Research statement 4

developers on a better system, network, and app design to extend battery life. The study got
widely covered in the media4. The high screen energy identified by our measurement study as
a major contributor of daily battery drain is now being targeted by the system-wide dark mode
features in the latest Android, iOS and macOS versions.

• We published the HUSH source-code in Github. HUSH repository has been forked over 50
times by the developer community. Android team released app-standby and Doze features
very similar to HUSH in the Marshmallow version.

• Differential energy profiling became the key feature in Eagle Debugger5, an energy diagnostics
solution for mobile apps, developed by the startup I co-founded, Mobile Enerlytics.

Future research

Debugging and optimization is universal to all computer systems permeating the entire software indus-
try. I am excited to build upon my experience to continue to steadily climb the automation pyramid
(Figure 1). In the longer term, I wish to develop general guiding principles for any program improvement
tool and build robust theories around decidability of automated fixing of programs. In the near future,
I plan to work on following problems:

[Reveal system properties] Fine-grained power consumption analysis of large-scale dis-
tributed systems. Data centers already consume 2% of the global energy consumption and due to
the explosive growth of machine learning they are predicted to consume up to 8% of the projected
global demand by 20306. I believe a thorough understanding of how a data center consumes power as
a whole and how individual applications and scheduling strategies contribute to the overall power con-
sumption are top-priority challenges. It is hard to model and measure data center power consumption
for the following reasons– (1) the level of support given by most modern hardware systems for measuring
power consumption is insufficient, (2) power models are not portable across heterogenous systems, and (3)
power model accuracy rapidly degrades across different workloads and different data center deployments.
I plan to investigate a self-generating and self-correcting power modelling methodology that correlates
individual system events with aggregated power consumption. Once a robust power model is created, it
can be leveraged to create a fine-grained energy profiler that reveals the energy consumption behaviour
of complex distributed applications and scheduling strategies. Such observability of data center power
consumption shall uncover previously undiscovered power optimization opportunities.

[Generate error reports] Root cause analysis of performance variations. System performance
can be adversely affected by a modification in system’s source code, by variations in execution such
as taking two different A/B test execution branches, or by myriad of environmental factors such as
changing network conditions, dynamic scheduling decisions, especially in the big.LITTLE architecture,
and memory pressure at the time of code execution. Separating these root causes is imperative for
generating actionable error reports in performance monitoring setups such as in-house regression testing,
and in-the-wild performance monitoring. I plan to explore data science and machine learning based
approaches, such as clustering, classification and hypothesis testing, to train models that are able to
identify why system performance metrics get affected. Using the trained models, I would like to further
understand and enumerate all root causes that impact performance of a given system. This will guide
the next step of defining actionable error reporting mechanisms that can quickly guide developers toward
fixes.

[Suggest program fixes] Deep machine understanding of APIs to suggest program fixes.
Modern applications are written using specialized programming frameworks such as ReactJS for fron-
tend development, TensorFlow for developing ML models, Spring for backend development, etc. As these
framework services and libraries mature, they continue to offer higher-level intricate functionalities to
programmers via flexible APIs. Abundance of multiple applications reusing the same APIs in slightly
different ways to implement similar functionalities has opened up new exciting research possibilities for
suggesting high-fidelity program fixes and improvements through deep machine understanding of APIs.

4Smartphone Battery Drains a Lot Even with Dark Screen. Scientific American, 2015.
5Eagle Debugger Energy Comparison (https://www.youtube.com/watch?v=5FF72KaKILg).
6Nature: How to stop data centres from gobbling up the world’s electricity?, September 2018.

Abhilash Jindal - Research statement 5

I plan to extend my recent work [8] and explore how traditional tools such as profilers can embrace this
modern programming paradigm to directly suggest program fixes.

Making progress in above areas requires multi-disciplinary research with hard problems needing to
be solved in diverse areas of computer science and engineering. I plan to work closely within our depart-
ment with computer theorists, hardware engineers, PL and ML experts where their domain expertise
combined with my systems building ability create highly impactful research. Outside the department,
I will collaborate with Electrical and Mechanical engineering colleagues to build accurate tools to show
a holistic view of and debug issues with the power consumed by data centers. I further plan to use
my customer discovery experience from my startup to build appropriate research processes to engage
industry leaders to thrusts these advanced systems toward broader adoption.

References

[1] Abhilash Jindal. “Towards Automated Energy Debugging on Smartphones”. PhD thesis. Purdue Uni-
versity, Aug. 2017.

[2] Abhilash Jindal, Abhinav Pathak, Y. Charlie Hu, and Samuel P. Midkiff. “On death, taxes, and sleep
disorder bugs in smartphones”. In: Proceedings of the Workshop on Power-Aware Computing and Systems
(HotPower). ACM. 2013, p. 1.

[3] Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, and Samuel P. Midkiff. “What is keeping my phone
awake?: Characterizing and detecting no-sleep energy bugs in smartphone apps”. In: Proceedings of the 10th
international conference on Mobile systems, applications, and services (MobiSys). ACM. 2012, pp. 267–280.

[4] Abhilash Jindal, Abhinav Pathak, Y. Charlie Hu, and Samuel P. Midkiff. “Hypnos: understanding and
treating sleep conflicts in smartphones”. In: Proceedings of the 8th ACM European Conference on Computer
Systems (EuroSys). ACM. 2013, pp. 253–266.

[5] Abhilash Jindal, Prahlad Joshi, Y. Charlie Hu, and Samuel P. Midkiff. “Unsafe time handling in smart-
phones”. In: 2016 USENIX Annual Technical Conference (ATC). USENIX Association. 2016, pp. 115–
127.

[6] Xiaomeng Chen, Ning Ding, Abhilash Jindal, Y. Charlie Hu, Maruti Gupta, and Rath Vannithamby.
“Smartphone energy drain in the wild: Analysis and implications”. In: Proceedings of the 2015 ACM
SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. ACM. 2015,
pp. 151–164.

[7] Xiaomeng Chen, Abhilash Jindal, Ning Ding, Y. Charlie Hu, Maruti Gupta, and Rath Vannithamby.
“Smartphone background activities in the wild: Origin, energy drain, and optimization”. In: Proceedings of
the 21st Annual International Conference on Mobile Computing and Networking (MobiCom). ACM. 2015,
pp. 40–52.

[8] Abhilash Jindal and Y. Charlie Hu. “Differential energy profiling: energy optimization via diffing similar
apps”. In: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation
(OSDI). USENIX Association. 2018, pp. 511–526.

[9] Ana Nika, Yibo Zhu, Ning Ding, Abhilash Jindal, Y. Charlie Hu, Xia Zhou, Ben Y. Zhao, and Haitao
Zheng. “Energy and performance of smartphone radio bundling in outdoor environments”. In: Proceed-
ings of the 24th International Conference on World Wide Web (WWW). International World Wide Web
Conferences Steering Committee. 2015, pp. 809–819.

[10] Faez Ahmed, Abhilash Jindal, and Kalyanmoy Deb. “Cricket team selection using evolutionary multi-
objective optimization”. In: International Conference on Swarm, Evolutionary, and Memetic Computing
(SEMMCO). Springer. 2011, pp. 71–78.

[11] Faez Ahmed, Kalyanmoy Deb, and Abhilash Jindal. “Multi-objective optimization and decision making
approaches to cricket team selection”. In: Applied Soft Computing 13.1 (2013), pp. 402–414.

[12] Xiaomeng Chen, Abhilash Jindal, and Y. Charlie Hu. “How much energy can we save from prefetching
ads?: energy drain analysis of top 100 apps”. In: Proceedings of the Workshop on Power-Aware Computing
and Systems (HotPower). ACM. 2013, p. 3.

[13] Mark S. Drew, Graham D. Finlayson, and Abhilash Jindal. “Colour image compression by grey to colour
conversion”. In: Computational Imaging IX. Vol. 7873. International Society for Optics and Photonics. 2011,
78730Z.

Abhilash Jindal - Research statement 6

