
 COL733: Handout Material for Q1 and Q2 

 The following excerpts are taken from the User Manual for Intel’s 8086 family architecture 
 released in the late 1970s. In this problem, we will try to reason about the 8086 architecture 
 to virtualize CPU and memory. We have condensed the 208-page manual to mere 11 pages 
 for this problem. Chapter numbers and section numbers are kept consistent with the manual. 
 So don’t be surprised when you see Section 2.2 without seeing Section 2.1.  Occasional text 
 in italics are additions made by the instructor for the problem. 

 Chapter 1: Introduction 

 Microprocessors  : 

 At the core of the product line are three microprocessors  (including 8086)  that share these 
 characteristics: 

 ●  Standard operating speed is 5 MHz (200ns cycle time); a selected 8 MHz version of 
 8086 CPU is also available. 

 ●  Chips are housed in reliable 40-pin packages. 
 ●  Up to 1 megabyte of memory can be addressed, along with a separate 64k bytes I/O 

 space. 

 Chapter 2: The 8086 and 8088 Central Processing Unit 

 Both CPUs are substantially more powerful than any microprocessor previously offered by 
 Intel. Actual performance, of course, varies from application to application, but comparisons 
 to the industry standard 2-MHz 8080A are instructive. The 8088 is from four to six times 
 more powerful than the 8080A; the 8086 provides seven to ten times the 8080A’s 
 performance. 

 The high performance of the 8086 and 8088 is realized by combining a 16-bit internal data 
 path with a pipelined architecture that allows instructions to be prefetched during spare bus 
 cycles. Also contributing to performance is a compact instruction format that enables more 
 instructions to be fetched in a given amount of time. 

 2.2  Process Architecture 

 Microprocessors generally execute a program by repeatedly cycling through the steps 
 shown below (this description is somewhat simplified): 

 1. Fetch the next instruction from memory. 
 2. Read an operand (if required by the instruction). 
 3. Execute the instruction. 
 4. Write the result (if required by the instruction). 

 In previous CPUs, most of these steps have been performed serially, or with only a single 
 bus cycle fetch overlap. The architecture of the 8086 and 8088 CPUs, while performing the 



 same steps, allocates them to two separate processing units within the CPU. The execution 
 unit (EU) executes instructions; the bus interface unit (BIU) fetches instructions, reads 
 operands, and writes results. 

 The two units can operate independently of one another and are able, under most 
 circumstances, to extensively overlap instruction fetch with execution. The result is that, in 
 most cases, the time normally required to fetch instructions ‘‘disappears’’ because the EU 
 executes instructions that have already been fetched by the BIU. 

 Execution Unit (EU) 

 The execution units of the 8086 and 8088 are identical (figure 2-6). A 16-bit arithmetic/logic 
 unit (ALU) in the EU maintains the CPU status and control flags, and manipulates the 
 general registers and instruction operands. All registers and data paths in the EU are 16 bits 
 wide for fast internal transfers. 

 The EU has no connection to the system bus, the “‘outside world.’’ It obtains instructions 
 from a queue maintained by the BIU. Likewise, when an instruction requires access to 
 memory or to a peripheral device, the EU requests the BIU to obtain or store the data. All 
 addresses manipulated by the EU are 16 bits wide. The BIU, however, performs an address 
 relocation that gives the EU access to the full megabyte of memory space (see section 2.3). 

 Bus Interface Unit (BIU) 

 The BIU performs all bus operations for the EU. Data is transferred between the CPU and 
 memory or I/O devices upon demand from the EU. Sections 2.3 and 2.4 describe the 



 interaction of the BIU with memory and I/O devices  (we will not see 2.4 for this problem 
 since we’re only interested in CPU/memory virtualization)  . 

 General registers 

 Both CPUs have the same complement of eight 16-bit general registers (figure 2-7). The 
 general registers are subdivided into two sets of four registers each: the data registers 
 (sometimes called the H & L group for ‘“‘high’’ and ‘‘low’’), and the pointer and index registers 
 (sometimes called the P & I group). 

 The data registers are unique in that their upper (high) and lower halves are separately 
 addressable. This means that each data register can be used interchangeably as a 16-bit 
 register, or as two 8-bit registers. The other CPU registers always are accessed as 16-bit 
 units only. The data registers can be used without constraint in most arithmetic and logic 
 operations. In addition, some instructions use certain registers implicitly (see table 2-1) thus 
 allowing compact yet powerful encoding. 

 Table 2-1: Implicit use of general registers 

 REGISTER  OPERATIONS 

 AX  Word Multiply, Word Divide, Word I/O 

 AL  Byte Multiply, Byte Divide, Byte I/O, Translate, Decimal Arithmetic 

 AH  Byte Multiply, Byte Divide 

 BX  Translate 

 CX  String Operations, Loops 



 CL  Variable Shift and Rotate 

 DX  Word Multiply, Word Divide, 
 Indirect I/O 

 SP  Stack Operations 

 SI  String Operations 

 DI  String Operations 

 Segment Registers 

 The megabyte of 8086 and 8088 memory space is divided into logical segments of up to 64k 
 bytes each. (Memory segmentation is described in section 2.3.) The CPU has direct access 
 to four segments at a time; their base addresses (starting locations) are contained in the 
 segment registers (see figure 2-8), The CS register points to the current code segment; 
 instructions are fetched from this segment. The SS register points to the current stack 
 segment; stack operations are performed on locations in this segment. The DS register 
 points to the current data segment; it generally contains program variables. The ES register 
 points to the current extra segment, which also is typically used for data storage. 

 The segment registers are accessible to programs and can be manipulated with several 
 instructions. Good programming practice and consideration of compatibility with future Intel 
 hardware and software products dictate that the segment registers be used in a disciplined 
 fashion. 

 Instruction Pointer 

 The 16-bit instruction pointer (IP) is analogous to the program counter (PC) in the 8080/8085 
 CPUs. The instruction pointer is updated by the BIU so that it contains the offset (distance in 
 bytes) of the next instruction from the beginning of the current code segment; i.e., IP points 
 to the next instruction. During normal execution, IP contains the offset of the next instruction 
 to be fetched by the BIU; whenever IP is saved on the stack, however, it first is automatically 
 adjusted to point to the next instruction to be executed. Programs do not have direct access 



 to the instruction pointer, but instructions cause it to change and to be saved on and restored 
 from the stack. 

 Flags 
 The 8086 and 8088 have six 1-bit status flags (figure 2-9) that the EU posts to reflect certain 
 properties of the result of an arithmetic or logic operation. A group of instructions is available 
 that allows a program to alter its execution depending on the state of these flags, that is, on 
 the result of a prior operation. 

 Different instructions affect the status flags differently; in general, however, the flags reflect 
 the following conditions: 

 1. If AF (the auxiliary carry flag) is set, there has been a carry out of the low nibble into 
 the high nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity 
 (low-order byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions. 

 2. If CF (the carry flag) is set, there has been a carry out of, or a borrow into, the high-order 
 bit of the result (8- or 16-bit). The flag is used by instructions that add and subtract 
 multibyte numbers. 

 3. If OF (the overflow flag) is set, an arithmetic overflow has occurred; that is, a significant 
 digit has been lost because the size of the result exceeded the capacity of its destination 
 location. An Interrupt On Overflow instruction is available that will generate an interrupt in 
 this situation  (We will not worry about this instruction  for this problem)  . 

 4. If SF (the sign flag) is set, the high-order bit of the result is a 1. Since negative binary 
 numbers are represented in the 8086 and 8088 in standard two’s complement notation, SF 
 indicates the sign of the result (0 = positive, 1 = negative). 

 5. If PF (the parity flag) is set, the result has even parity, an even number of 1-bits. This 
 flag can be used to check for data transmission errors. 

 6. If ZF (the zero flag) is set, the result of the operation is 0. 



 Three additional control flags (figure 2-9) can be set and cleared by programs to alter 
 processor operations: 

 1. Setting DF (the direction flag) causes string instructions to auto-decrement; that is, to 
 process strings from high addresses to low addresses, or from ‘‘right to left.’’ Clearing 
 DF causes string instructions to autoincrement, or to process strings from ‘‘left to right.’’  (We 
 will not worry about string instructions for this problem). 

 2. Setting IF (the interrupt-enable flag) allows the CPU to recognize external (maskable) 
 interrupt requests. Clearing IF disables these interrupts. IF has no effect on either non- 
 maskable external or internally generated interrupts. 

 3. Setting TF (the trap flag) puts the processor into a single-step mode for debugging. In this 
 mode, the CPU automatically generates an internal interrupt after each instruction, allowing 
 a program to be inspected as it executes instruction by instruction. Section 2.10 contains an 
 example showing the use of TF in a single-step and breakpoint routine.  (We will not be 
 seeing Section 2.10 details for this problem). 

 2.3 Memory 

 This section describes how memory is functionally organized and used. 

 From a storage point of view, the 8086 and 8088 memory spaces are organized as identical 
 arrays of 8-bit bytes. Instructions, byte data and word data may be freely stored at any 
 byte address without regard for alignment thereby saving memory space by allowing code to 
 be densely packed in memory. Instruction alignment does not materially affect the 
 performance of either processor. 

 Segmentation 

 8086 and 8088 programs ‘‘view’’ the megabyte of memory space as a group of segments 
 that are defined by the application. A segment is a logical unit of memory that may be up to 
 64k bytes long. Each segment is made up of contiguous memory locations and is an 
 independent, separately-addressable unit. Every segment is assigned (by software) a base 
 address, which is its starting location in the memory space. All segments begin 
 on 16-byte memory boundaries. There are no other restrictions on segment locations; 
 segments may be adjacent, disjoint, partially overlapped, or fully overlapped (see Figure 
 2-15). A physical memory location may be mapped into (contained in) one or more logical 
 segments. 



 The segment registers point to (contain the base address values of) the four currently 
 addressable segments (see figure 2-16). Programs obtain access to code and data in other 
 segments by changing the segment registers to point to the desired segments. 

 Every application will define and use segments differently. The currently addressable 
 segments provide a generous work space: 64k bytes for code, a 64k byte stack and 128k 
 bytes of data storage. Many applications can be written to simply initialize the segment 
 registers and then forget them. Larger applications should be designed with careful 
 consideration given to segment definition. 



 Physical Address Generation 

 It is useful to think of every memory location as having two kinds of addresses, physical and 
 logical. A physical address is the 20-bit value that uniquely identifies each byte location in 
 the megabyte memory space. Physical addresses may range from 0H through FFFFFH. All 
 exchanges between the CPU and memory components use this physical address. 

 Programs deal with logical, rather than physical addresses and allow code to be developed 
 without prior knowledge of where the code is to be located in memory and facilitate dynamic 
 management of memory resources. A logical address consists of a segment base value and 
 an offset value. For any given memory location, the segment base value locates the first 
 byte of the containing segment and the offset value is the distance, in bytes, of the target 
 location from the beginning of the segment. Segment base and offset values are unsigned 
 16-bit quantities; the lowest-addressed byte in a segment has an offset of 0. Many different 
 logical addresses can map to the same physical location as shown in figure 2-17. In figure 
 2-17, physical memory location 2C3H is contained in two different overlapping segments, 
 one beginning at 2BOH and the other at 2COH. 

 Whenever the BIU accesses memory—to fetch an instruction or to obtain or store a 
 variable—it generates a physical address from a logical address. This is done by shifting the 
 segment base value four-bit positions and adding the offset as illustrated in Figure 2-18. 
 Note that this addition process provides for modulo 64k addressing (addresses wrap around 
 from the end of a segment to the beginning of the same segment). 



 The BIU obtains the logical address of a memory location from different sources depending 
 on the type of reference that is being made (see table 2-2). Instructions always are fetched 
 from the current code segment; IP contains the offset of the target instruction from the 
 beginning of the code segment. Stack instructions always operate on the current stack 
 segment; SP contains the offset of the top of the stack. Variables (memory 
 operands) are assumed to reside in the current data segment  1  . 

 Table 2-2 Logical Address Sources  (Simplified) 

 Type of memory reference  Segment base  OFFSET 

 Instruction Fetch  CS  IP 

 Stack Operation  SS  SP 

 Variable  DS  Address in instruction 

 BP Used as base register  SS  Address in instruction 

 When register BP, the base pointer register, is designated as a base register in an 
 instruction, the variable is assumed to reside in the current stack segment. Register BP thus 
 provides a convenient way to address data on the stack. 

 Dynamically Relocatable Code 

 The segmented memory structure of the 8086 and 8088 makes it possible to write programs 
 that are position-independent, or dynamically relocatable. Dynamic relocation allows a 
 multiprogramming or multitasking system to make particularly effective use of available 
 memory. Inactive programs can be written to disk and the space they occupied 
 allocated to other programs. If a disk-resident program is needed later, it can be read back 
 into any available memory location and restarted. Similarly, if a program needs a large 
 contiguous block of storage, and the total amount is available only in nonadjacent fragments, 

 1  8086 programs can instruct the BIU to access a variable  in one of the other currently 
 addressable segments. For this problem, we will not worry about this to have simpler 
 instruction. 



 other program segments can be compacted to free up a continuous space. This process is 
 shown graphically in Figure 2-19. 

 In order to be dynamically relocatable, a program must not load or alter its segment registers 
 and must not transfer directly to a location outside the current code segment. In other words, 
 all offsets in the program must be relative to fixed values contained in the segment registers. 
 This allows the program to be moved anywhere in memory as long as the segment registers 
 are updated to point to the new base addresses. 

 Stack implementation 

 Stacks in the 8086 and 8088 are implemented in memory and are located by the stack 
 segment register (SS) and the stack pointer register (SP). A system may have an unlimited 
 number of stacks, and a stack may be up to 64k bytes long, the maximum length of a 
 segment. (An attempt to expand a stack beyond 64k bytes overwrites the beginning 
 of the stack.) One stack is directly addressable at a time; this is the current stack, often 
 referred to simply as ‘‘the” stack. SS contains the base address of the current stack and SP 
 points to the top of the stack (TOS). In other words, SP contains the offset of the top of the 
 stack from the stack segment’s base address. Note, however, that the stack’s base address 
 (contained in SS) is not the ‘‘bottom’’ of the stack. 



 8086 and 8088 stacks are 16 bits wide; instructions that operate on a stack add and remove 
 stack items one word at a time. An item is pushed onto the stack (see figure 2-20) by 
 decrementing SP by 2 and writing the item at the new TOS. An item is popped off the stack 
 by copying it from TOS and then incrementing SP by 2. In other words, the stack grows 
 down in memory toward its base address. Stack operations never move items on the stack, 
 nor do they erase them. The top of the stack changes only as a result of updating the stack 
 pointer. 


