
 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 COL 733 MAJOR EXAM
 Semester II, 2021-2022

 ● Please do not carry bag, phone, calculator, or any electronic device with you in the desk.
 Put your phone to silent mode or switch it off to avoid distraction.

 ● Keep your ID card at the desk.
 ● Max marks for each question is marked in [].
 ● Write only in the provided space, no rough sheets will be provided. Justify your answers.

 Duration: 2 hours Total marks: 75

 For answering Q1 and Q2, refer to the handout material.

 Q1 [18 marks] (CPU Virtualization): Let’s say we wish to build a “trap-and-emulate” based
 virtual machine monitor for 8086. For each of the following instructions, describe whether the
 instruction needs to be privileged. Justify your answer.

 a. NOP (no operands) [2 marks]: NOP (No Operands) causes the CPU to do nothing.
 NOP does not affect any flags.

 b. SAHF (no operands) [2 marks] : SAHF (store register AH into flags) transfers bits 7,6,
 4, 2 and 0 from register AH (see Figure 2-32) into SF, ZF, AF, PF and CF,
 respectively, replacing whatever values these flags previously had. OF, DF, IF and TF
 are not affected.

 c. POPF (no operands) [2 marks]: POPF transfers specific bits from the word at the
 current top of stack (pointed to by register SP) into the 8086/8088 flags, replacing
 whatever values the flags previously contained (see figure 2-32). SP is then

 1

 incremented by two to point to the new top of stack. PUSHF and POPF allow a
 procedure to save and restore a calling program’s flags. They also allow a program
 to change the setting of TF (there is no instruction for updating this flag directly). The
 change is accomplished by pushing the flags, altering bit 8 of the memory-image and
 then popping the flags.

 d. CLI (no operands) [2 marks]: CLI (Clear Interrupt-enablel flag) zeroes IF. When the
 interrupt-enable flag is cleared, the 8086 and 8088 do not recognize an external
 interrupt request that appears on the INTR line; in other words maskable interrupts
 are disabled. CLI does not affect any other flags.

 e. ADD destination, source [2 marks]: The sum of the two operands, which may be
 bytes or words, replaces the destination operand. Both operands may be signed or
 unsigned binary numbers. ADD updates AF, CF, OF, PF, SF, and ZF. Note:
 Destination and source can be a general register or a logical memory location; the
 source can also be a constant. Example usages (from Table2-21 of the manual):

 ADD destination,source

 register, register ADD CX, DX

 register, memory ADD DI, ALPHA

 memory, register ADD ALPHA, CL

 register, immediate ADD CL, 2

 memory, immediate ADD ALPHA, 2

 2

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 accumulator, immediate ADD AX, 200

 f. JMP target [2 marks]: JMP unconditionally transfers control to the target location.
 Unlike a CALL instruction, JMP does not save any information on the stack, and no
 return to the instruction following the JMP is expected. Like CALL, the address of the
 target operand may be obtained from the instruction itself (direct JMP) or from
 memory or a register referenced by the instruction (indirect JMP).

 An intrasegment direct JMP changes the instruction pointer by adding the relative
 displacement of the target from the JMP instruction. If the assembler can determine
 that the target is within 127 bytes of the JMP, it automatically generates a two-byte
 form of this instruction called a SHORT JMP; otherwise, it generates a NEAR JMP
 that can address a target within +32k. Intrasegment direct JMPS are self-relative and
 are appropriate in position-independent (dynamically relocatable) routines in which
 the JMP and its target are in the same segment and are moved together.

 Note: 8086 also allows “intersegment JMP” which also changes CS (Code Segment)
 register. For this problem, we will just assume that only intrasegment JMPs as
 described above are allowed.

 3

 g. NOT destination [2 marks]: NOT inverts the bits (forms the one’s complement) of the
 byte or word operand. Note: Destination can be a general register or a logical
 memory location (from Table2-21 of the manual):

 NOT destination

 register NOT AX

 memory NOT ALPHA

 h. PUSH source [2 marks]: PUSH decrements SP (the stack pointer) by two and then
 transfers a word from the source operand to the top of stack now pointed to by SP.
 PUSH often is used to place parameters on the stack before calling a procedure;
 more generally, it is the basic means of storing temporary data on the stack. Note:
 Source can be either a general register or a logical memory location.

 i. MOV destination, source [2 marks]: MOV transfers a byte or a word from the source
 operand to the destination operand. Note: Source and destination can be general
 registers, segment registers, or a logical memory location. Source can also be
 constants. Following shows some example from Table2-21 of the manual.

 memory, register MOV ALPHA, AL

 register, memory MOV, AX, ALPHA

 register, register MOV AX, CX

 register, constant MOV CL, 2

 4

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 seg-reg, register MOV ES, CX

 seg-reg, mem MOV DS, ALPHA

 reg, seg-reg MOV BP, SS

 Q2 [16 marks] (Memory virtualization): Describe some schemes for doing memory
 virtualization.
 Hints: You may assume that the hardware has more memory available that 1MB.

 a. [4 marks] Paravirtualization: Guest OS is aware that it is being virtualized.

 5

 b. [4 marks] Hardware-assisted full virtualization: Guest OS is unaware of being
 virtualized, hardware assists the hypervisor in virtualization;

 c. [4 marks] Software-based full virtualization: Guest OS is unaware of being
 virtualized, hypervisor is isolating guests from each other completely in software.

 6

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 d. [4 marks] Compare their pros and cons.

 Q3 [5 marks] (Raft heterogenous leader election): Let’s say that the Raft replicas are
 heterogenous i.e, with differing hardware. Since Raft uses a “strong leader”, how can we
 tweak the algorithm such that a more powerful machine (with a faster CPU/network
 card/disk) is more likely to become the leader. Also, justify why your new leader-election
 algorithm is safe+ live, given that any machine can crash arbitrarily.

 7

 Q4 [4 marks] (Raft state persistence): Mark persistent and non-persistent state in Raft. Give
 reasons why something should be persistent or why it is ok to be non-persistent? Assume
 that we are not storing the state machine state in persistent storage i.e, we are not creating
 any checkpoints.

 a. [1 marks] currentTerm

 b. [1 marks] votedFor

 c. [1 marks] log[]

 d. [1 marks] lastApplied

 8

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 Q5 [6 marks] (Zookeeper): Describe how to implement ZooKeeper on top of Raft. Use Raft
 variable names (votedFor, lastApplied, commitIndex, etc.) to be precise about your
 implementation. Remember that ZooKeeper provides linearizable writes + client FIFO and
 allows reading directly from replicas. Prove why your implementation provides linearizable
 writes + client FIFO.

 Q6 [6 marks] (Sharding): Let’s say we wish to manage N (>>3) shards over 3 storage nodes.
 These shards can be anything: ranges of keys in a key-value store, different tables in a
 database, or some other concurrent data structures. We would like reads and writes within
 each of these shards to be linearizable, but, we need not have linearizability across shards.

 Devise a scheme to do so (Justification of your scheme contains points, the scheme itself
 will not carry any point).

 9

 a. [1 mark] Justify how your scheme provides linearizability guarantees within a shard.

 b. [1 mark] Justify how your scheme is fault-tolerant.

 c. [1 mark] Discuss the availability of your scheme: in what failure conditions does your
 scheme continue to be available (continue to server read/write requests) and when
 does your system become unavailable. Justify your answer.

 10

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 d. [1 mark] Assuming read-write traffic to each shard is equal, how does your scheme
 provide load balancing? Each storage node is doing equal work.

 e. [2 marks] Let’s say that some of the shards can become hotter than others. Devise a
 decentralized scheme to dynamically rebalance the load among the servers, i.e,
 there is no separate master server overlooking the load and redistributing the load.

 11

 Q7 [10 marks] (Non-deterministic FSM): Raft is a mechanism for building replicated state
 machines. However, Raft’s construction only allows deterministic state machines. How could
 you modify Raft to allow some non-determinism?

 In particular, let’s say Raft is managing a non-deterministic state machine as shown in the
 Figure below. The state machine is mostly deterministic with a few non-deterministic
 transitions as shown in the dashed orange color in the figure. There are only two types of
 requests clients can send concurrently: writing 0/1 or reading the current state (the current
 state is also just a small integer).

 Justify that your modifications are able to preserve safety (linearizability) and liveness
 (makes progress as long as the majority nodes can talk to one another). For instance, the
 following history must not happen after arbitrary failures:

 Client: read = state 1, write 0, read = state 2, read = state 3.

 12

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 Q8: [10 marks] (IO virtualization): Following is a code-snippet from QEMU.
 qemu / hw / input /stellaris_input.c. Comments starting from “COL733” represents instructor
 comments.

 /*
 * Gamepad style buttons connected to IRQ/GPIO lines
 *
 * Copyright (c) 2007 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licensed under the GPL.
 */

 #include "qemu/osdep.h"
 #include "hw/input/gamepad.h"
 #include "hw/irq.h"
 #include "ui/console.h"

 /** COL733: Defines one button of Gamepad. **/
 typedef struct {

 13

https://github.com/qemu/qemu/tree/266469947161aa10b1d36843580d369d5aa38589
https://github.com/qemu/qemu/tree/266469947161aa10b1d36843580d369d5aa38589/hw
https://github.com/qemu/qemu/tree/266469947161aa10b1d36843580d369d5aa38589/hw/input

 qemu_irq irq; // COL733: which interrupt does this button raise
 int keycode; // COL733: What is the keycode of this button.
 uint8_t pressed; // COL733: Is this button pressed?

 } gamepad_button;

 /** COL733: Defines the overall state of the gamepad. **/
 typedef struct {

 gamepad_button *buttons; // COL733: A linked list of all the buttons
 int num_buttons; // COL733: Length of the linked list

 } gamepad_state;

 /* COL733: Initialize the virtual gamepad. */
 void stellaris_gamepad_init(int n, qemu_irq *irq, const int *keycode)
 {

 gamepad_state *s;
 int i;

 s = g_new0(gamepad_state, 1); // COL733: Similar to calloc. Allocate 1
 gamepad_state sized object and return its pointer.

 s->buttons = g_new0(gamepad_button, n); // COL733: Allocate a linked
 list of n gamepad_button sized objects. Return head of the linked list.

 for (i = 0; i < n; i++) {
 s->buttons[i].irq = irq[i];
 s->buttons[i].keycode = keycode[i];

 }
 s->num_buttons = n;
 qemu_add_kbd_event_handler(stellaris_gamepad_put_key, s); // COL733:

 Register stellaris_gamepad_put_key function with QEMU’s keyboard event
 handler. Whenever a keyboard button is pressed, QEMU will call the
 registered function pointer with “opaque = s”.
 }

 static void stellaris_gamepad_put_key(void * opaque, int keycode)
 {

 gamepad_state *s = (gamepad_state *)opaque;
 int i;
 int down = (keycode & 0x80) == 0;

 // Loop 1
 for (i = 0; i < s->num_buttons; i++) {

 if (s->buttons[i].keycode == keycode
 && s->buttons[i].pressed != down) {

 s->buttons[i].pressed = down;
 qemu_set_irq(s->buttons[i].irq, down);

 }
 }

 }

 a. [5 marks] What do you think “Loop 1” is trying to do?

 14

 Please write your Entry Numer and Name in each page.

 Entry No.: Name:

 The previous code is initiated by hw/arm/stellaris.c as follows:

 static void stellaris_init(MachineState *ms, stellaris_board_info *board) {
 …..
 if (board->peripherals & BP_GAMEPAD) {

 qemu_irq gpad_irq[5];
 static const int gpad_keycode[5] = {0xc8, 0xd0, 0xcb, 0xcd, 0x1d};

 gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
 gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
 gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
 gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
 gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */

 stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
 }
 ….

 }

 b. [5 marks] This code sets up I/O emulation to emulate mouse up, left, down, and right
 as gamepad joystick’s up, left, down, and right respectively and the left control button
 as gamepad’s select. How would you modify the emulator so that it emulates
 keyboard presses of W, A, S, and D respectively as gamepad joystick’s up, left,
 down, and right respectively and Return key as gamepad’s select?

 15

 Here are the keycodes for all the keys: (From
 https://gist.github.com/rickyzhang82/8581a762c9f9fc6ddb8390872552c250

 1 # Esc
 59 # F1
 60 # F2
 61 # F3
 62 # F4
 63 # F5
 64 # F6
 65 # F7
 66 # F8
 67 # F9
 68 # F10
 87 # F11
 88 # F12
 183 # PrintScrn
 70 # Scroll Lock
 197 # Pause
 41 # `
 2 # 1
 3 # 2
 4 # 3
 5 # 4
 6 # 5
 7 # 6
 8 # 7

 9 # 8
 10 # 9
 11 # 0
 12 # -
 13 # =
 14 # Backspace
 210 # Insert
 199 # Home
 201 # Page Up
 69 # Num Lock
 15 # Tab
 16 # Q
 17 # W
 18 # E
 19 # R
 20 # T
 21 # Y
 22 # U
 23 # I
 24 # O
 25 # P
 26 # [
 27 #]
 28 # Return

 211 # Delete
 207 # End
 209 # Page Down
 58 # Caps Lock
 30 # A
 31 # S
 32 # D
 33 # F
 34 # G
 35 # H
 36 # J
 37 # K
 38 # L
 39 # ;
 40 # '
 42 # Shift Left
 44 # Z
 45 # X
 46 # C
 47 # V
 48 # B
 49 # N
 50 # M
 51 # ,

 52 # .
 53 # /
 54 # Shift Right
 43 # \
 200 # Cursor Up
 29 # Ctrl Left
 219 # Logo Left (->
 Option)
 56 # Alt Left (->
 Command)
 57 # Space
 184 # Alt Right (->
 Command)
 220 # Logo Right (->
 Option)
 221 # Menu (->
 International)
 157 # Ctrl Right
 203 # Cursor Left
 208 # Cursor Down
 205 # Cursor Right

 16

https://gist.github.com/rickyzhang82/8581a762c9f9fc6ddb8390872552c250

