
Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 1

[9 marks] IO virtualization.

For these problems, assume a simple trap-and-emulate hypervisor with no dynamic binary

translation, etc.

[1 mark] (T/F) Writing to a virtualized IO device register causes a VM exit for both Port IO
devices and MMIO devices.

[1 mark] (T/F) Reading from a virtualized IO device register may cause no VM exits for
MMIO devices.

[1 mark] (T/F) Reading from a virtualized IO device register may cause no VM exits for
Port IO devices.

[2 marks] Mark each network IO virtualization technique with 1, 2, and 3.

The technique marked with 1 can be expected to provide the highest throughput. The

technique marked with 3 is expected to provide the least throughput.

____ Full virtualization: Emulating e1000, a real physical NIC.

____ Paravirtualization: virtio-net

____ Direct device assignment with SRIOV NICs

[4 marks] In the direct device assignment, the guest device driver wants to give access to

GPA=X, which translates to HPA=Y, to the device. How might a 2-D IOMMU be set up for

this?

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 2

[10 marks] Primary backup replication.

[2 mark] Mark each workload with 1, 2, and 3.

The workload marked with 1 can be expected to experience the least slowdown when run

in fault-tolerant virtual machines compared to when they are run in a single VM. The

workload marked with 3 is expected to experience the most slowdown.

______ Computing Nth fibonacci number.

______ Sending 1GB of data to a client.

______ Receiving 1GB of data from a client.

[3 marks] Justify your answers to the previous question.

[5 marks] Let’s say that the shared storage server accepts only two types of requests

(other than the test-and-set request used during failover):

● <read, block number>: This returns data in the requested disk block number.

● <append, block data>: This internally maintains a “current block number”, writes

data to the current block number, and then increments the current block number.

You can further assume that the VM is appending disk blocks one after another

sequentially in a simple loop.

Can fault-tolerant VMs create an unintended disk state? If yes, describe the exact

sequence of events and their unintended outcome. Further, describe how the APIs and

their behaviours can be changed so that the disk state remains correct. Note that you

should still support read and append APIs. Their parameters and return values may be

modified. New API may be added to support the read and append APIs.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 3

[10 marks] Distributed computation

Let us say that we are given the following Spark program to compute the transitive closure of

a graph.

spark = # Initialize Spark

tc = # Input a graph as a collection, i.e, RDD, of (src, dst) tuples

#Linear transitive closure: each round grows paths by one edge, by

#joining the graph's edges with the already-discovered paths. e.g.

#join the path (y, z) from the TC with the edge (x, y) from the

#graph to obtain the path (x, z).

#Because join() joins on keys, the edges are stored in a reversed

order.

edges = tc.map(lambda x_y: (x_y[1], x_y[0]))

oldCount = 0

nextCount = tc.count()

while True:

oldCount = nextCount

#Perform the join, obtaining an RDD of (y, (z, x)) pairs,

#then project the result to obtain the new (x, z) paths.

joined = tc.join(edges)

new_edges = joined.map(lambda x: (x[1][1], x[1][0]))

tc = tc.union(new_edges).distinct()

nextCount = tc.count()

if nextCount == oldCount:

Break

print("TC has %i edges" % tc.count())

spark.stop()

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 4

[4 marks] Assuming that the program completes in two iterations across the while loop.

Draw the lineage graph of this program.

[3 marks] In the lineage graph drawn above, identify RDDs that you might want to
checkpoint. Justify your answer.

[3 marks] Assume that the input graph, tc, is partitioned by src in the (src, dst)

tuple. Mark narrow and wide dependencies in the lineage graph.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 5

[11 marks] Raft

Let us say that the workers a, b, c, d, and e have the following logs. Each entry in a worker’s
log just specifies the term number.

Log index -> 0 1 2 3 4 5

a’s log -> 1 4 4 5

b’s log -> 1 4

c’s log -> 1 4 4 5

d’s log -> 1 2 2 3 3

e’s log -> 1 4 4 4 4

[2 marks] Circle the log entries in the table above that may be committed entries.

[6 marks] Specify a leader election trace that may lead workers into these logs. In
particular, you have to answer which worker may have become leader in which term, who
may have voted for that leader, when did the leader crash, etc.

[3 marks] Draw a table indicating which worker may vote for which workers in term 6
election? Also identify which workers may become leader in term 6.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 6

[15 marks] A simple microservice

Let us say that we have the following hypothetical microservice.

#include <stdlib.h>

#include <stdio.h>

#include <time.h>

int exponent(int a, int b) {

 int result = 1;

 for(int i=0; i< b; i++)

 result *= a;

 return result;

}

int* charToInt(char* arr_ch, int len) {

 int* arr_int = (int*) malloc(len * sizeof(int));

 for(int i = 0; i < len; i++) {

 arr_int[i] = (int)(arr_ch[i]);

 }

 return arr_int;

}

void getTime(char* time_str) {

 time_t current_time;

 time(¤t_time);

 struct tm* time_info = localtime(¤t_time);

 strftime(time_str, sizeof(time_str), "%H:%M:%S", time_info);

}

int main() {

 char time_str[9];

 getTime(time_str);

 printf("%s: %d", time_str, exponent(3, 4));

 return 0;

}

When the service is run, it just logs the current time and exponent(3, 4) to the serial

console and exits. For example, it prints the following when it is run three times, once every

second.

11:53:50: 81

11:53:51: 81

11:53:52: 81

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 7

[3 marks] For the program above (assuming
no compiler optimizations), draw the
unikraft dependency graph. Please specify
any assumptions you make about unikraft.
Briefly justify each edge in your
dependency graph.

Hints: Following is the Unikraft dependency
graph of NGINX, a load balancer. In the figure, ipc stands for Inter-process

communication, mm stands for memory manager, fs stands for filesystem, and net stands

for network.

[3 marks] Rewrite an optimized version of the given C program after applying dead-code
elimination and constant folding.

Hints: Dead-code elimination is an optimization that removes code which does not affect
the program results. For example, the if (0) { … } can just be deleted:

Constant folding is the process of recognizing and evaluating constant expressions at
compile time rather than computing them at runtime. For example, the compiler can
replace x = 5 + 2 with just x = 7.

[3 marks] For the optimized program above, redraw the Unikraft dependency graph.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 8

[5 marks] Let’s say that the VM image was compiled (without the compiler optimizations)
for x86 but we would like to run it on a server with ARM CPUs. Describe how one might
run it. Please use just the charToInt function and describe how it may be run.

[1 mark] Iterative pre-copy live migration will finish in a lesser number of iterations if we are
calling the exponent function in a loop compared to if we are calling charToInt

function in a loop.

[10 marks] Funkernels

Recently, we are observing another shift from microservices to FaaS. Let’s say we wish to

leverage this and design Funkernels: VM images specialised for running just a single

function once. For the same microservice given above, we are interested in creating three

different Funkernels: one for the exponent function, one for the charToInt function, and

one for the getTime function.

Further assume that the FaaS hypervisor is able to custom setup registers and memory for

each VM image. It can give control to the VM image and finally can do a custom read of

registers and memory to know the return value of each function.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 9

Also assume that you have access to the best possible compiler that can apply any code

optimization you can think of. Basically, try to make each Funkernel really minimal.

[3 marks] Design a Funkernel for the exponent function.

[3 marks] Design a Funkernel for the charToInt function.

[4 marks] Suggest an ordering of start times and image sizes between the three VM
images: the unikernel for the unoptimized microservice, the funkernel for the exponent

function, and the funkernel for the charToInt function. Justify your answer.

Name: _______________________ Entry num: _______________________

COL732: Major exam Total: 65 marks 10

Rough sheet

