Name: Entry no:

Overview

In this exam, we will reason about how to virtualize 64-bit ARMv8 architectures. Most
concepts are similar to the Intel x86 architecture that we have been studying. But, there are
some curious differences. The following excerpts are taken from [G]: “2015 - ARM Cortex-A
Series Programmer’s Guide for ARMv8-A”. Please read them carefully to answer questions.

Design principles of virtualization support on ARM

ARM architecture virtualization extensions were introduced in 2010. Until then, virtualization
on ARM systems was not widely used. However, as ARM CPUs continued to increase in
performance, pushing from mobile devices into traditional servers, interest in ARM
virtualization also grew.

[G 3] Fundamentals of ARMv8

In ARMv8, execution occurs at one of four Exception levels. The Exception level determines
the privilege level, so an Exception level with a larger value of n than another one is at a
higher Exception level.

Exception levels provide a logical separation of software execution privilege that applies
across all operating states of the ARMv8 architecture. It is similar to and supports the
concept of hierarchical protection domains common in computer science.

The following is a typical example of what software runs at each Exception level:

ELO: Normal user applications.

EL1: Operating system kernel typically described as privileged.
EL2: Hypervisor.

EL3: Low-level firmware.

In general, a piece of software, such as an application, the kernel of an operating system, or
a hypervisor, occupies a single Exception level. An exception to this rule is in-kernel
hypervisors such as KVM, which operate across both EL2 and EL1.

ARMvV8 has the following privileged components:

e Guest OS kernels: Such kernels include Linux or Windows running in EL1. When
running under a hypervisor, the rich OS kernels can be running as a guest or host
depending on the hypervisor model.

e Hypervisor: This runs at EL2. The hypervisor, when present and enabled, provides
virtualization services to rich OS kernels.

[G 3.2] Changing Exception levels
The processor mode can change under privileged software control or automatically when
taking an exception. When an exception occurs, the core saves the current execution state

and the return address, enters the required mode, and possibly disables hardware interrupts.

Movement between Exception levels follows these rules:

COL 732 Minor exam Total: 40 marks 1

Name:

Entry no:

Moves to a higher Exception level, such as from ELO to EL1, indicate increased
software execution privilege.
An exception cannot be taken to a lower Exception level.
There is no exception handling at level ELO, exceptions must be handled at a higher
Exception level.
An exception causes a change in the program flow. Execution of an exception
handler starts, at an Exception level higher than ELO, from a defined vector that
relates to the exception taken. Exceptions include
Interrupts.
Memory system aborts.
Undefined instructions.
System calls. These permit unprivileged software to make a system call to an
operating system.

o Hypervisor traps.
Ending exception handling and returning to the previous Exception level is performed
by executing the ERET instruction.
Returning from an exception can stay at the same Exception level or enter a lower
Exception level. It cannot move to a higher Exception level.

o O O

O

[2 marks] Trapping on undefined instructions sounds unnecessary. One should never have
undefined instructions anyways. Why not just halt the CPU, i.e, it does not process any
more instructions?

[2 marks] How come we do not allow interrupt handling at ELO? If an ELO software was
smart enough, we could just let it handle all the interrupts. This could be performant too
since we will not have to change exception levels.

COL 732 Minor exam Total: 40 marks 2

Name: Entry no:

[G 4] ARMvVS registers

The execution state provides 31 64-bit general-purpose registers accessible at all times and
in all Exception levels. Each register is 64 bits wide and they are generally referred to as
registers X0-X30.

[G 4.1] Special registers

In addition to the 31 core registers, there are also several special registers.

—

Zero register XZR/WZR
Special Program counter PC
registers Stack pointer [SP_ELO || SP_EL1 SP_EL2 SP_EL3
Program Status Register SPSR_EL1| [SPSR_EL2 | | SPSR_EL3
Exception Link Register ELR_EL1 ELR_EL2 ELR_EL3
b ELO EL1 EL2 EL3

Figure 4-3 AArch64 special registers

When accessing the zero register, all writes are ignored and all reads return 0. The
exception return state is held in the following dedicated registers for each Exception level:
e Exception Link Register (ELR).
e Saved Processor State Register (SPSR).

[G 4.1.2] Stack pointer

There is a dedicated SP per Exception level. The choice of the stack pointer to use is
separated to some extent from the Exception level. By default, taking an exception selects
the stack pointer for the target Exception level, SP_ELn. For example, taking an exception to
EL1 selects SP_EL1. Each Exception level has its own stack pointer, SP_ELO, SP_ELA1,
SP_EL2, and SP_ELS3.

At an Exception level other than ELO, the processor can use either:
e Adedicated 64-bit stack pointer associated with that Exception level (SP_ELn).
e The stack pointer associated with ELO (SP_ELO).

ELO can only ever access SP_ELO.

The SP cannot be referenced by most instructions. However, some forms of arithmetic
instructions, for example, the ADD instruction, can read and write to the current stack pointer
to adjust the stack pointer in a function. For example:

ADD SP, SP, #0x10 // Adjust SP to be 0x10 bytes before its current
value

COL 732 Minor exam Total: 40 marks 3

Name: Entry no:

[1 mark] Changing SP_EL1 must be a privileged instruction if we want to build a
trap-and-emulate hypervisor. (True / False)

[G 4.1.3] Program Counter

The PC is never accessible as a named register. Its use is implicit in certain instructions
such as PC-relative load and address generation. The PC cannot be specified as the
destination of a data processing instruction or load instruction.

[1 mark] The processor has one physical PC register that is multiplexed across
applications, guest OSes, and the hypervisor. (True / False)

[G 4.1.5] Saved Process Status Register (SPSR)

The SPSR holds the PSTATE before taking an exception and is used to restore the PSTATE
when executing an exception return. Some bits:

31st: Negative flag (N)

30th: Zero flag (2)

7th: IRQ mask bit (1)

6th: FIQ mask bit (1)

Bits 3:0: Exception level that an exception was taken from

In ARMv8, the SPSR written to depends on the Exception level. If the exception is taken in
EL1, then SPSR_EL1 is used. If the exception is taken in EL2, then SPSR_EL2 is used, and
if the exception is taken in EL3, SPSR_EL3 is used. The core populates the SPSR when
taking an exception.

[G 4.2] Processor state

You return from an exception by executing the ERET instruction, and this causes the
SPSR_ELn to be copied into PSTATE. This restores the ALU flags, execution state,
Exception level, and processor branches. From here, you continue execution from the
address in ELR_ELn.

[1 mark] ELO can be allowed to set the {N, Z} bits of SPSR_EL1. (True / False)

[1 mark] ELO can be allowed to set the {I} bit of SPSR_EL1. (True / False)

COL 732 Minor exam Total: 40 marks 4

Name: Entry no:

[G 12] The Memory Management Unit

An important function of the Memory Management Unit (MMU) is to enable the system to run
multiple tasks, as independent programs running in their own private virtual memory space.

Virtual Addresses are those used by you, the compiler and the linker when placing code in
memory. Physical Addresses are those used by the actual hardware system. The MMU uses
the most significant bits of the Virtual Address to index entries in a translation table and
establishes which block is being accessed. The MMU translates the Virtual Addresses of
code and data to the Physical Addresses in the actual system. The translation is carried out
automatically in hardware and is transparent to the application.

[G 12.2] Separation of kernel and application Virtual Address spaces

Operating systems typically have a number of applications or tasks running concurrently.
Each of these has its own unique set of translation tables and the kernel switches from one
to another as part of the process of switching context between one task and another.
However, much of the memory system is used only by the kernel and has fixed virtual to
Physical Address mappings where the translation table entries rarely change.

The table base addresses are specified in the Translation Table Base Registers
(TTBRO_EL1) and (TTBR1_EL1). The translation table pointed to by TTBRO is selected
when the upper bits of the VA are all 0. TTBR1 is selected when the upper bits of the VA are
all set to 1. The Virtual Address from the processor of an instruction fetch or data access is
64 bits.

Virtual memory Physical memory
OxFFFFFFFF_FFFFFFFF —
- Reserved Reserved
Peripherals Peripherals
ROM
Kernel \ /
Not available ~Space Reseved Translation table
in EL2 or EL3
RAM / TTBR1_EL1 Reserved
0xFFFF0000_00000000 |
ROM
Reserved
RAM
0x0000FFFF_FFFFFFFF
User Translation table
spaie A]
Reserved
e aTed TTBRO_ELO

0x00000000_00000000

Figure 12-3 Address translation using translation tables

COL 732 Minor exam Total: 40 marks 5

Name: Entry no:

[G 12.3] Translating a Virtual Address to a Physical Address

When the processor issues a 64-bit Virtual Address for an instruction fetch, or data access,
the MMU hardware translates the Virtual Address to the corresponding Physical Address.
For a Virtual Address, the top 16 bits [63:47] must be all Os or 1s, otherwise, the address
triggers a fault.

The least significant bits are then used to give an offset within the selected section so that
the MMU combines the Physical Address bits from the block table entry with the least
significant bits from the original address to produce the final address.

The architecture also supports tagged addresses. This is where the most significant eight
bits of the address are ignored (treated as not being part of the address). This means that
the bits can be used for something else, for example, recording information about a pointer.

Virtual address from core

l

63 41 29 28 0
VA TTBR select | Level 2 index Physical address [28:0]

Low bits of virtual
TTBRx address form low bits of
physical address

Page table entry

Page table
base address

Index in table

Level 2 pége table with 8192 ent'ries

Page table entry
contains PA[47:29]

2
PA PA[47:29] Physical address [28:0]

Figure 12-7 Virtual to Physical Address translation for a 512MB block

COL 732 Minor exam Total: 40 marks 6

Name: Entry no:

[6 marks] The above translation scheme has only one level of look-up. It assumes that we
have 64KB pages in the page table and each page table entry is 64 bits (=8 bytes). So
each page in the page table is storing 8192 entries. It is translating to 512MB blocks
(physical frames). Redraw the above figure if we were translating the virtual address to
16KB pages. Pages in the page table are also 16KB. Assume that PTEs are still 64 bits.

[1 mark] Translating to larger pages uses less number of TLB entries. (True / False)

[G 12.5.1] Virtual Address tagging

The Translation Control Register, TCR_ELn has an additional field called Top Byte Ignore
(TBI) that provides tagged addressing support. General-purpose registers are 64 bits wide,
but the most significant 16 bits of an address must be all OxFFFF or 0x0000. Any attempt to
use a different bit value triggers a fault.

When tagged addressing support is enabled, the top eight bits, that is [63:56] of the Virtual
Address are ignored by the processor. The top eight bits of a Virtual Address can then be
used to pass data. These bits are ignored for addressing and translation faults. The
TCR_EL1 has separate enable bits for ELO and EL1. ARM does not specify or mandate a
specific use case for tagged addressing.

COL 732 Minor exam Total: 40 marks 7

Name: Entry no:

[3 marks] Describe how Rust’s RC might leverage ARM’s virtual address tagging.

[4 marks] What are the pros and cons of using virtual address tagging for RC?

[G 12.6] Translations at EL2 and EL3

The virtualization extensions to the ARMv8-A architecture introduce the second stage of
translation. When a hypervisor is present in the system, one or more guest operating
systems might be present. These continue to use TTBRn_EL1 as previously described and
MMU operation appears unchanged.

The hypervisor must perform some extra translation steps in a two-stage process to share
the physical memory system between the different guest operating systems. In the first
stage, a Virtual Address (VA) is translated into an Intermediate Physical Address (IPA). This
is usually under OS control. A second stage, controlled by the hypervisor, then performs
translation of the IPA to the final Physical Address (PA).

e]
Guest OS -
» Translation tables —»| > lianslationiablos
on TTBRn_EL1 MAMBRONEEZ
‘ Application (ELO) l — RAM
RAM
Virtual memory ma ;
Under controlri/)f gu‘;st 0os Physical memory map
seen by guest (IPA)
Hypervisor ’ RAM
‘ Hypervisor (EL2) l » Translation tables
[T

Real physical memory map

Figure 12-15 Two stage translation process

The stage 2 translations, which convert an intermediate physical address to a Physical
Address, use an extra set of tables under the control of the hypervisor. These must be

COL 732 Minor exam Total: 40 marks 8

Name: Entry no:

explicitly enabled by writing to the Hypervisor Configuration Register HCR_EL2. This
process only applies to EL1/0 accesses. The base address of this stage 2 translation table is
specified in the Virtualization Translation Table Base Register VTTBRO_EL2.

It is also possible to set stage 1 translation table for hypervisor’s code and data by setting
TTBRO_EL2.

For the following problems, assume that we are maintaining the following address
translations. For simplicity, you can assume just two levels of translation tables in each
stage. Feel free to define new address mapping as you see fit.

Virtual address (GVA) | Intermediate physical address (GPA) | Physical address (HPA)

0x1000 0x3000 0x5000

0x2000 0x4000 0x6000

[4 marks] Compare the number of memory references required to service a TLB miss in
the two stages of address translations vs in a single stage of address translations. Give a
walkthrough using an example.

Nested virtualization

In this problem, we wish to support nested virtualization on ARM architecture, i.e, run
hypervisors on top of another hypervisor (which we call ulfravisor to avoid confusion). This
can be useful in the following scenario: AWS rents its servers to Uber, and then Uber further
rents to its internal services. This allows Uber hypervisor to monitor each service and do its
own load balancing by migrating Guest OSes. For this problem, we assume that the
Ultravisor is running in EL3, as shown in the following schematic.

Rental service Payment service | Account service Photos service ELO
Guest OS 1 Guest OS 2 Guest OS 3 Guest OS 4 EL1
Hypervisor-1 (Uber) Hypervisor-2 (Snapchat) EL2
Ultravisor (AWS) EL3

COL 732 Minor exam Total: 40 marks 9

Name: Entry no:

[8 marks] ARM MMU only supports two stages of address translation whereas we would
like to support three stages: Guest virtual address (GVA) -> Guest physical address (GPA)
-> Hypervisor physical address (HPA) -> Ultravisor physical address (UPA). Describe how
we can support this without modifying the guest OS or the hypervisor and without adding
another address translation stage to the hardware. Assume that the hypervisor was
already using VTTBRO_EL?2 to do 2 stages of address translation. Feel free to make
reasonable assumptions on which instructions shall trap to EL3 to support good
performance for your translation scheme. Discuss pros and cons of your approach.

COL 732 Minor exam Total: 40 marks 10

Name: Entry no:

[7 marks] How does your translation scheme handle the case where the hypervisor writes
to HCR_EL?2 to disable two-stage address translation. In other words, hypervisor made
GPA = HPA by writing to HCR_EL 2.

COL 732 Minor exam Total: 40 marks 11

Name:

Entry no:

Rough sheet

COL 732 Minor exam

Total: 40 marks

12

