Name: Entry number:

Instructions

e Verify that your exam has pages 1 to 10. Please fill the name and entry number on
every page front and back. Do this first before starting the exam.

e During the exam, you should not have any electronic equipment including laptop,
mobile phone, calculator, tablets, etc.

e The exam is open notes, open book, open slides. You can keep the printouts with
you during the exam.

e Please answer each question in the provided space. Rough space is available on
Page 5.

Please sign below:

I will not give or receive aid in the examination. | accept that any act of mine that can be
considered to be an //TD Honour Code violation will invite disciplinary action.

Signature:

Q1. [4 marks] Assembly program

Let us say that the following recursive function foo is called with arguments 9, 12.
foo:

movl1 4(%esp), %eax
mov1l 8(%esp), %edx
cmpl %edx, %eax
jne .L3
ret

.L11:
subl %edx, %eax
pushl %edx
pushl %eax
call foo
ret

.L3:
cmpl %eax, %edx
jl .L11
subl %eax, %edx

pushl %edx
pushl %eax
call foo

ret

Q1.1 [4 marks] What will be the return value (value in register %eax) when the function
returns?
Hint: Draw the stack. Track %eip, %esp, %eax, %edx as the program executes.

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 1

Name: Entry number:

Q2. [7 marks] Memory allocator
Let us say that we are running the following program:

void* malloc(size t s) {

return sbrk(s);

Process code

}
void free(void *p){ }

I

int main(int argc, const char *argv[]) {

Process heap

int iter = atoi(argv[1l]);

for(int i = 0; i < iter; i ++) {
int* ptr = (int*) malloc(sizeof(int));
*ptr = iter;
free(ptr);

Process stack

}

return 0;

0os

}

0x00300100

0x00300000

0x00200000

0x00100000
0x00000000

Notice that the program is using a custom virtual memory allocator. Assume that the OS is
using segmentation hardware to do memory isolation. It has set up the segments for this
process as shown in the figure. Initially, the base of the process’ heap (data segment) is

0x00300000 and the limit is zero.

Q2.1 [2 marks] For the given layout, what is the smallest positive value of iter for which
the program will crash? Assume that the OS never relocates segments elsewhere. OS will
return a null pointer from sbrk when the segment can no longer grow.

question.

Q2.2 [2 marks] The user observes that the program was working fine for iter=100. But,
when they run the same program again with iter=100, the program crashes. What might
be the reason for the crash? Assume the same behaviour of the OS as in the above

COL331/COL633 Minor Duration: 2 hours Total: 50 marks

Page number: 2

Name: Entry number:

Q2.3 [3 marks] Please modify malloc/free implementations to fix this program such that it
works for all iter values. You may assume that the OS can, regardless of other processes
in the system, grow the process’ heap (data segment) to a size of 0x100 bytes.

Hint: You only need to make sure that the given program does not crash. You need not
make arbitrary programs work. You are not allowed to modify the main function.

Q3. [5 marks] Hard disk drives

Let us say we are using a RAID-5 setup with 8 identical HDDs. The HDD mentions the
following specifications in its datasheet:

Capacity: 1TB; Max. Sustained Transfer Rate (MB/s): 200MB/s; Bytes per sector: 4096;
Rotational speed (RPM): 6,000; Average seek delay: 5ms

Q3.1 [1 mark] How many disk failures can the setup tolerate before we lose data?

Q3.2 [1 mark] What is the capacity of the setup?

Q3.3 [1 mark] What sequential read throughput can we expect?

Q3.4 [1 mark] What random read throughput can we expect?

Q3.5 [1 mark] What random write throughput can we expect?

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 3

Name: Entry number:

Q4. [7 marks] Metadata journaling

Let us say our disk has 512 byte blocks. There is a file which is spread over three data
blocks (file size = 1536 bytes). The file contains 1536 ‘A’'s. A program opens the file, seeks to
the start of the file, makes one write operation to write 1536 ‘B’s, and closes the file. All the
working of the program is in a single file system transaction. After the program ends, the
computer abruptly restarts. When the file system becomes available, the user sees that the
file has 512 ‘A’s, then 512 ‘B’s, and then 512 ‘A’s.

Q4.1 [4 mark] Precisely explain the sequence of events which led to this outcome. The file
system was using metadata journaling.

Q4.2 [3 mark] Can the same outcome be observed if the file system was instead using full
journaling, i.e, logging both the data and the metadata blocks? Justify your answer.

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 4

Name: Entry number:

Q5 [3 marks]: Protection
Let us say that the value of the code segment (cs) register is 0x001B and the data segment
(ds) register is 0x0012.

Q5.1 [1 mark] What is the current privilege level?

Q5.2 [1 mark] Which index of the GDT is going to be used to do address translation for
eip?

Q5.3 [1 mark] What value should the descriptor privilege level be set to, in the segment
descriptor, such that it can be referred by the program?

This area is intentionally left blank. You can use it for rough work.

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 5

Name: Entry number:

Q6 [24 marks]. Snapshotting

In this problem, we are interested in extending the indexed file system studied in class to
support hourly snapshotting. A snapshot is a consistent state of the file system. Snapshots
can be used to recover old versions of files and folders. For example, let us say a user
accidentally deleted a file named /exam.md and wants to recover it. The following example
shows how to list all the versions of /exam.md saved in snapshots.

$ 1s -1h /.snap/*/exam.md

-rw-r--r--@ 1 user group 1002 Feb 24 11:00 /.snap/hr.0/exam.md
-rw-r--r--@ 1 user group 958 Feb 24 10:00 /.snap/hr.1/exam.md
-rw-r--r--@ 1 user group 512 Feb 24 09:00 /.snap/hr.2/exam.md
-rw-r--r--@ 1 user group 512 Feb 24 08:00 /.snap/hr.3/exam.md

The user can recover the most recent version by copying it:
$ cp /.snap/hr.0/exam.md /

One naive approach to implement snapshotting would be to copy the entire file system every
hour. But this approach will be very slow. It also wastes disk space: if most files are not
changed across snapshots, we are unnecessarily creating copies of it.

Therefore, we try to use a copy-on-write approach to share blocks across the current file
system and the snapshots. The following shows the state of our file system with four hourly
shapshots. We assume that each inode block contains 5 inodes each. Inodes 0, 1, 2, 3, and
4 are in block 4. Inodes 0, 1, 2, and 3 contain hourly snapshots and inode 4 contains the
current file system.

Disk layout Block 7
- - Block 9
0 1 2 D:ta 4-6 7-32 ‘ File/dir name|Inode number
Boot Super | Inode block Inode Data File/dir name |Inode number
block block |byte map byt blocks blocks exam.md 8
yie map exam.md 5 attend.md 6
Block 2 Inode byte map g|qck 4 attend.md 6 Block 8
0:1 | 1:1) 2:1|3:1] 4:1
52| 6 |7:11841] 90 I7node = 0 */.snap/hr.0" Block 10 File/dir name|Inode number
Inode = 1 “/.snap/hr.1* File/dir name |Inode number exam.md 7
Block 3 Data byte map 8 exam.md 5 attend.md 6
7:1 181191 [10:111:1 Inode = 2 “/.snap/hr.2“ Block 5
12:3/13:1| 14: |15:1(16:0| |9 Block 11
Y “ Inode = 5 “exam.md (v1)“
Inode = 3 */.snap/hr.3 File/dir name |Inode number 12 v1)
10 .
Block 6 Block 16 Inode = 4 “/« attend.md 6 ----- --»{Inode = 6 “attend.md (v1)“
11 15
Inode = 7 “exam.md (v2)*
Block 12 Block 13 Block 14 Block 15 12,13
Qi: ... Q3: ... Q3: ... Roll#1: 2/4 Inode = 8 “exam.md (v3)*
Roll#2: 4/4 12,14
Qz: ... Q4: ... Inode = 9

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 6

Name: Entry number:

Q6.1 [2 marks]: Draw solid arrows from inodes to data blocks and dotted arrows from
directory entries to inodes. Two examples are already drawn in the figure.

The file system described above is as follows. The (v1), (v2), etc. annotations in block 5 are
only shown for clarity.
/

|— .shap

| — hr.e

| | |— attend.md
| | L— exam.md

| F— hr.1

| | |— attend.md
| | L— exam.md

| I— hr.2

| | }— attend.md
| | L— exam.md

| L— hr.3

| L— exam.md
L— attend.md

Byte maps to track reference counts: In the indexed file system, we kept inode (data
block) bitmaps where we stored 0 if the inode (data block) is free. We modify this slightly for
our snapshotting file system. The inode byte map (block 2) and the data block byte map
(block 3) now store 1 byte for each inode and data block respectively. For each inode (data
block), inode byte map (data block byte map) stores the number of incoming arrows to the
inode (data block).

Q6.2 [1 mark]. What will be the byte map values for inode 6 and for data block 14 in the
file system shown above.

Q6.3 [1 mark]: How many inode byte map blocks are required if this file system had 1000
inode blocks.

Deduplication: Notice that this file system design is de-duplicating inodes and data blocks
across snapshots. For example, /.snap/hr.2/exam.md and /.snap/hr.3/exam.md were
identical. Therefore, their directory entries for exam.md point to the same inode number 5.
Similarly, the first data block of exam.md was the same for all versions. Therefore, all
exam.md inodes have the same first data block as 12.

Q6.4 [1 mark]: /.snap/hr.1/exam.md has more contents than /.snap/hr.2/exam.md.

[True/False]

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 7

Name: Entry number:

Q6.5 [1 mark]: attend.md has not changed in the last 2 hours.

[True/False]

Q6.6 [4 marks]. With deduplication, we are able to store 4 snapshots and the current file
system in 2 inode blocks (4, 5) and 9 data blocks (7-15). Calculate how many inode blocks
and how many data blocks would be required for storing the same information if we were
simply copying the file system for creating snapshots i.e, without any deduplication.

Hint: Redraw the disk blocks when there is no deduplication.

Copy on write.

Now, whenever we are modifying an inode (or a data block), we first check if the
corresponding byte map value is greater than 1. If it is, that means the inode (data block) is
also being referenced from earlier snapshots. In such cases, we instead copy the inode
(data block). For example, at hr.0, the user appended “Q4” to the exam.md file. At that point,
instead of directly changing inode 7 and data block 13, the file system created a new inode 8
and data block 14.

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 8

Name: Entry number:

Q6.7 [3 marks]: Let us say the user wants to update the attendance of Roll#1 to 4/4 from
2/4 in attend.md. Redraw only the changed blocks below.

Snapshotting. At each hour, we want to snapshot the current file system state. In particular,
e /.snap/hr.e should contain what / contained before the snapshot,
e /.snap/hr.1 should contain what /.snap/hr.0 contained before the snapshot,
e /.snap/hr.2 should contain what /.snap/hr.1 contained before the snapshot,
e /.snap/hr.3 should contain what /.snap/hr.2 contained before the snapshot.

Q6.8 [3 marks]: Modify and redraw the state of the disk blocks after a new snapshot has
been created. Try to change the least number of blocks.

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 9

Name: Entry number:

Crash consistency. Let us say that we “recover” the file system after a crash by simply
reverting to the last snapshot. Therefore, we are not doing any kind of write ahead logging.

Q6.9 [3 marks]. Describe an ordering based approach to create a new snapshot which
also cleans up the oldest snapshot. For simplicity, assume we are blocking all other file
system operations while we are creating the snapshot. Argue why this ordering cannot
lead to dangling pointers.

Q6.10 [3 marks]: Is creating a snapshot a fast or a slow operation? Justify your answer.

Q6.11 [2 marks]: Contrast this file system with the ext3 file system studied in the class.
What are the pros and cons?

COL331/COL633 Minor Duration: 2 hours Total: 50 marks Page number: 10

